Learning Scale and
Shift-Invariant Dictionary
for Sparse Representation




Sparse Coding

Method to represent a given signal with a small
number of features selected from a given
large number of candidates
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Sparse Coding

Method to represent a given signal with a small
number of features selected from a given
large number of candidates
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Sparse Coding

* signal (observation): ¥ = (Y1, Y2, - - 7yn)_|_ c R"

» atoms (features): di = (di1,dio, . . ., alkn)T c R"
(k=1,2,...,m)

* dictionary: D = (dy,d>,...,d,,) € R"™"™ (n < m)

.. T
o coefficientvector: © = (z1,22,...,2,) €R™
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Sparse Coding

Given a signal y € R" and a dictionary D € R*"*™
find a sparse coefficient vector «

— Lasso R
minimize |y — Dz||5 + \||z||;
. } J

minimize the approximation error and
the sparsity regularizer



Choice of a Dictionary

minimize ||y — Dz||3 + ||z
£r

* The choice of a dictionary D significantly
affects the quality of overall signal processing

 How to choose a dictionary D to
represent data by sparse coding ?



Dictionary Learning

* Learn adaptive features

from a set of signals Y1, ¥Ys,-- -, Yy
N
?11%1mlze > (ly; — Djll5 + A1)
L j =17 ,] 1

* This problem is not jointly convex
with respect to both {x; }j\le and D

* Alternating minimization is used to
solve the above problem




Dictionary Learning

* Learn adaptive features

from a set of signals Y1, ¥Ys,-- -, Yy
Lk

mmlml.z_e_ — Dx;||5 + M|z 1)

{mj}é\f 1' j= 1|

 coefficient vectors are independently
optimized for each signal

* Adictionary is optimized as
common features for a set of signals




Assumption
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Similar features appear at various scales and locations

of the observed signals
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Assumption

* Natural Image

e Common to assume there are
multi-scale features in images

* Itis reasonable that an object
of different size have the same
features of different scale

e Time Series Data

1.0

- * Assume the signals have similar
00 | ' temporal patterns at various
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Problem
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Can we learn atoms and their scaled or shifted

atoms from a set of signals by dictionary learning?

e Learned atoms are essential features
to characterize a set of signals
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Problem
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Can we learn atoms and their scaled or shifted

atoms from a set of signals by dictionary learning?
— NO

G

N

minimize Z(Hyj — ijH% + A1)

* In general, a dictionary model does not consider
the relationship between atoms
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Our Contribution

We propose:

* a dictionary model

which considers the

scale and shift structure
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 an algorithm to learn
— .
shift a structured dictionary

from a set of signals
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Introducing Shift and Scaling

Structure Into a Dictionary

/\/\  We assume all atoms of a

“ dictionary is generated from a
single vector a € R"

* which we call ancestor

« Atoms are generated by
scaling or shifting an ancestor

o|eds

An ancestor is an essential

feature which generates other
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features
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shift
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Introducing Shift and Scaling

Structure Into a Dictionary

a /\/\ * We can use multiple ancestors

a (1=1,2,..., L) to generate
* a dictionary
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14
Introducing Shift and Scaling

Structure Into a Dictionary

a /\/\J * We can use multiple ancestors
a (1=1,2,..., L) to generate

* a dictionary
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Scaling Operation

e An ancestor itself is used as an
atom of a dictionary

e The scale of the ancestor is

e All scaled atoms need to have

the same dimensionality to
compose a dictionary

* changed by scaling operation
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Scaling Operation

* We use linear resize operation
to shrink the size of the
ancestor

* We use zero-padding to keep
the dimensionality of
resized atoms

* Whole scaling operation
(resize and zero-padding) is a
linear operation
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Shift Operation
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* Atoms are shifted by
changing the position
of zero elements of
zero-padded atoms

» Shift operations are also
linear operations
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Atom generating matrix F', ,

 An atom generating operation is a unique operation
composed of a scaling and a shift operation

* An atom generating operator can be
written as a matrix as F'y, ,
P :index of scaling, ¢:index of shift
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Atom generating matrix I, ,

* Example of F),

* Resize by taking average of two adjacent elements

« Shift one element by zero-padding

» zero-pad rest of the elements

(Lo 0 0 0 0 0 0 0
1/2 1/2
0 0 [1/2 1/2 0
1/2 1/2
0 1/2 1/2

A~
v
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Dictionary Generated
From an Ancestor

* Each atom of dictionary is generated from

an ancestor a by multiplying
atom generating matrix F', , as F'),a

* A dictionary generated from an ancestor is

D(a) - F(),Oa, FLOGJ F1,1a - ijQa

e Setof (p,q) iswritten by A

20




L. 21
Dictionary Generated

From Multiple Ancestors

 When we use multiple ancestors ai,az,...,ar,

whole dictionary is generated by concatenating
dictionaries D(a;),D(as),...,D(ar)

D(ai,as,...,ar)=| D(ay) | D(as)|--- | D(ayr)




Learning Ancestors

Problem is to learn a dictionary which has
scale and shift structure
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Can we learn atoms and their scaled or shifted

atoms from a set of signals by dictionary learning?
— NO




Learning Ancestors

* Problem is to learn a dictionary which has
scale and shift structure
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Can we learn ancestors @1,0Q2,...,4ar,

from a set of signals ?
— YES

G

* Ancestors are essential features which generate
other features
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Ancestral Atom Learning (AAL)

N L
minimize > Uy, =Y Y Fpgar™ |3+ Nz
{w3}3:17{a’l}l:1 ,]:1 l:1 (p,Q)EA
* Find the sparse coefficient vectors x; (j =1,2,...,N)
and ancestors a; (I =1,2,...,L) to sparsely

approximate the signals ¥; (j =1,2,..., N)
* The problem is not jointly convex with respect to
both {x;}_; and {a;};_,

» Alternating minimization is used to solve this problem
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Algorithm

Initialize ancestors a,g ), aé ) a(LO)

for t=0to T

1. Sparse Coding (Lasso)
wgt) = arg min ly; — D(agt), . (t))wj 15+ Az |1
’ (j=1,...N)

2. Ancestor update (Stochastic gradient descent)

l
agt),.. a(L):argmmZHyj Z Z F, .a; azpq (t)||2

""" =1 (p,q)€A
end loop
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Experiment with artificial signals
SCAlE m—

al  We use 16x16 pixels 2D Gabor atoms as
as ground-truth ancestors

* Signals are generated by a linear
as combination of scaled or shifted

ground-truth ancestors

ground-truth ancestors
(three scales)

* Generated signals can be approximated by
three essential features and their variants

* Can we recover the ground-truth ancestors
from signals ?

generated signals



Results
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Ancestral Atom Learning (AAL)

Multi-scale K-SVD



Results

Multi-scale
K-SVD

Orientation

can be
different from
ground-truth

Smaller than
ground-truth
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Reconstruction

Slagels

Slightly higher than
Multi-scale K-SVD

v



Experiments with
Natural Images

* We extract 16x16 patches
from natural images and
these patches are used to
learn ancestors

* No ground-truth
ancestors are known

28
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Experiments with

Natural Images

* Edge-like features and
texture-like features are
learned from signals

e Texture like features of multi-
scale K-SVD are only learned
at smaller scale

Ancestra

 Artifacts appear in the

learned features by multi-
scale K-SVD

Multi-scale K-SVD
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Experiments with

Natural Images

* Edge-like features and
texture-like features are
learned from signals

e Texture like features of multi-
scale K-SVD are only learned
at smaller scale

Ancestra

 Artifacts appear in the

learned features by multi-
scale K-SVD

Multi-scale K-SVD
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Summary

* We propose a model of a dictionary which have
shift and scaling structure

 Shift and scaling structure are introduced by
generating atoms from vectors called ancestors

* A simple gradient based algorithm was presented
to learn ancestors from signals

* Our proposed method successfully learn
features appear at various scales and locations
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Treating High Dimensional

Signals

* We use 2D ancestor when the signal is 2D signal
by vectorizing the signals and ancestors

* Scaling and shift is operated along each axis

* 3D or higher signal can be treated in the same way

/

e

(a) 1st scale (b) 2nd scale (c) 3rd scale




Resize operation (general case)

resize ancestor a € R" to the length n'

1. expand the length to the lem(n,n')
(least common multiple of 7 and n' )
by repeating each elements lem(n,n’)/n times

2. resize expanded ancestors to the length n’
by taking average of lem(n,n’)/n’ elements

33
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Resize operation (general case)

resize ancestor a € R®
to the length 6

1. expand the length to the
24 by repeating each
elements 3 times

2. resize expanded
ancestors to the length 6
by taking average of
adjacent 4 elements
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Multiscale K-SVD

. e Scale of the features are

split into quad-tree structure

* Multiple features are learned
for each scale

* The relationship between
scales is not considered

» Shifted atoms generated
from an atom cannot be
overlapped




2D Gabor dictionary

atoms are generated by sampling continuous function

/2 2 .12 /
g(x,y; A\, 0,90v) = exp roTy cOS 27rx— +
202 A

where

v’ = xcosl + ysinb
/

Yy = —xsinf + ycosf

scale of atom is controlled by o

36



MSE
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e |n the first 10 iterations,
AAL have smaller MSE

e Multi-scale K-SVD have
slightly smaller MSE
after 10 iterations



Computational Time

* Computational time for 50loops

e Multi-scale K-SVD learns low correlation atoms and
the lasso needs small number of iterations

* AAL generate a dictionary which have high
correlation therefore lasso take a long time

Multi-scale
K-SVD

Artificial

Natural
Image

38
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Experimental Setup

Ancestral Atom Learning

e Number of ancestors : 3 (artificial data), 9 (natural
image)

e Amount of shift: 2 for all scales
* Size of ancestors : 16x16, 14x14, 12x12, 10x10, 8x8

* Number of atoms generated from an ancestor:
55=1+4+9+16+25

* Regularization parameter A: 0.01

e jteration: 50



Experimental Setup

Multi-scale K-SVD

 Number of scales: 3 (artificial, natural image)
 Number of atoms: 10 for each scale

* Size of atoms : 16x16, 8x8, 4x4

 Amount of shift: 0, 8,4

 Number of atoms for each scale: 10, 40, 160
* Regularization parameter A :0.01

e jteration: 50
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