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Abstract—Domain adaptation aims to transfer knowledge of
labeled instances obtained from a source domain to a target
domain to fill the gap between the domains. Most domain
adaptation methods assume that the source and target domains
have the same dimensionality. Methods that are applicable when
the number of features for each sample is different in each
domain have rarely been studied, especially when no label
information is given for the test data obtained from the target
domain. In this paper, it is assumed that common features exist
in both domains and that extra (new additional) features are
observed in the target domain; hence, the dimensionality of the
target domain is higher than that of the source domain. To
leverage the homogeneity of the common features, the adaptation
between the source and target domains is formulated as an
optimal transport (OT) problem. In addition, a learning bound in
the target domain for the proposed OT-based method is derived.
The experiments with simulated and real-world data show that
our proposed algorithm is able to obtain better model for the
target domain by considering the extra features given for the
target domain.

Index Terms—Heterogeneous Domain Adaptation, Optimal
Transport, Transfer Learning

I. INTRODUCTION

The goal of supervised learning is to build a model f that
maps the features x to its corresponding label y from a given
training dataset DS to estimate the label of the unlabeled
test dataset DT . Let the distributions of the training data
be PS(x, y), and the test data be PT (x, y), respectively.
However, when PS(x, y) ̸= PT (x, y), the difference leads
loss of accuracy of the trained model on the test data. It
is still possible to train a model that accurately predicts
the label of the test data by considering the difference in
the distributions. Domain adaptation techniques are used to
consider the difference in the distributions by transferring
information from the source domain to the target domain [1],
[2]. Henceforth, we refer to the domains of the training and test
data as the source and target domains, respectively. In general,
domain adaptation aims to match the joint distributions of
(x, y) in the source and target domains.

Most domain adaptation methods assume spaces of the
same dimensionality as the source and target domains. This
type of domain adaptation is called homogeneous domain
adaptation, and these methods cannot be applied when the
number of the features is different for each domain, such as
when images of different sizes are observed in each domain.

Domain adaptation for spaces of different dimensionalities
is called heterogeneous domain adaptation. In the literature,
only a few methods have been proposed for unsupervised
heterogeneous domain adaptation.

In this paper, we consider an unsupervised heterogeneous
domain adaptation problem where both the source and target
domains have common features and extra (new additional) fea-
tures are observed in the target domain. Here, we assume that
data is tabular data and that it is known whether each feature
is a common feature or an extra feature. Also, since each
common feature represents the same attribute in the source and
target domains, the homogeneity of common features should
be considered for domain adaptation. For example, consider
the case of measuring the movements of a person with a set of
accelerometers. The types of activity are assigned as a label for
each observed movement, and these data are used for training.
Then, assume that the activities of another person are estimated
from the measurements of movements obtained using the same
set of accelerometers and additional gyroscopes. In this case,
the features obtained by the accelerometers become common
features, and the features obtained by the gyroscopes become
extra features. The observation of such extra features poten-
tially produce better target data distributions that improves
the estimation accuracy of target labels. However, the extra
features cannot directly be used for estimation because the
extra features are not observed for training data. The goal of
this paper is to provide a method that enable the use of extra
features for better estimation in the target domain.

However, general heterogeneous domain adaptation meth-
ods do not assume the homogeneity of features, and a special
case of heterogeneous domain adaptation called hybrid domain
adaptation has been studied to address this issue, where it is
assumed that the source and target domains have common
features, and domain-specific features are also given for each
domain. To preserve the homogeneity of the common features,
hybrid domain adaptation learns the models used to predict
domain-specific features from common features. Then, the
learned models are used to estimate the unobserved domain-
specific features.

The problem considered in this paper can be seen as a
variant of a hybrid domain adaptation problem, in which the
domain-specific features are only given for the target domain.
In the same manner as for hybrid domain adaptation, the
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unobserved extra features in the source domain are predicted
using common features. Unlike hybrid domain adaptation,
our proposed method estimates the unobserved features using
optimal transport (OT). Recently, OT has been used for domain
adaptation to match the distributions in the source and target
domains. However, when the number of features is different
between the source and target domains, it is difficult to define
an appropriate transport cost for OT.

To solve our problem using OT, it is natural to consider
two-way OT. Namely, extra features in the source domain are
estimated by solving the OT problem from the target domain
to the source domain, then the label information in the source
domain is transferred to the target domain by solving another
OT problem. For these OT problems, we use pseudo-labels
as proxies of unobserved true target labels and consider a
problem similar to joint distribution optimal transport (JDOT).
Namely, in the former OT, the distance between the common
features and the mismatch between the source label and the
target pseudo-label are used for the transport cost so that the
joint distributions of the features and labels are better matched
in the source and target domains. Then, in the latter OT, the
distance between the extra features is additionally considered.
We show that this two-way OT is equivalent to one-way OT
under the assumption that the conditional distribution of an
extra feature given a common feature and a label is identical
before and after OT. Figure 1 shows the above concept.

We summarize the contributions of this paper:

• We propose an algorithm based on OT for a domain
adaptation problem where the domain shift between the
source and target domains is caused by the observation of
extra (new additional) features and the distribution shift
of common features.

• We provide an interpretation of the proposed algorithm
that the proposed one-way OT-based algorithm is equiv-
alent to two-way OT.

common variables extra variableslabel

source

distribution new
shift

target

observation

domain shift
domain adaptation

pseudo-label

Fig. 1: Conceptual illustration of the proposed domain adap-
tation method for the observation of extra features. The two-
way OT between the source and target domains is considered
to estimate the extra features in the source domain and the
labels in the target domain. Practically, this two-way OT is
solved as one-way OT from the source domain to the target
domain.

• We derive a learning bound of the trained model by
the proposed method in the target domain. The derived
upper bound is based on the Rademacher complexity and
the Wasserstein distance between the true and estimated
target distributions, and the upper bound also gives an
intuitive understanding of the proposed algorithm.

The rest of this paper is organized as follows. In Section II,
the related work of domain adaptation and OT is summarized.
In Section III, we present the practical algorithm based on
one-way OT. Then, we show the equivalence of the proposed
method and two-way OT in Section IV. Also, the learning
bound of the proposed method is presented. In Section V,
we report the results of experiments on synthetic and real-
world datasets. Then, we summarize the paper and discuss
the limitations of the proposed method and future work in
Section VI.

II. RELATED WORK

A. Unsupervised Domain Adaptation

In general, domain adaptation aims to match the joint
distributions of the features and the label (x, y) in the source
and target domains. Especially, when no labeled data of the
target domain are available, the domain adaptation problem is
called unsupervised domain adaptation, which we consider in
this paper.

1) Homogeneous Domain Adaptation: Most domain adap-
tation methods assume spaces of the same dimensionality as
the source and target domains. This type of domain adaptation
problem is called homogeneous domain adaptation.

In unsupervised homogeneous domain adaptation, the dis-
tributions of the source and target domains are matched on
the basis of the assumption made for the change in distribu-
tion. There are a number of unsupervised domain adaptation
methods, which are categorized into several groups. Recall that
PS(x, y),PT (x, y) be the source and target joint distribution
of features and label. Then, the covariate shift [3] assumes
that PS(y|x) = PT (y|x) and PS(x) ̸= PT (x). Therefore, it
aims to match the distributions PS(x) and PT (x) to match
the joint distribution, for example, by importance reweight-
ing [4]. Similarly, the conditional shift or the concept shift [5]
assumes either PS(y|x) ̸= PT (y|x) or PS(x|y) ̸= PT (x|y),
and the target shift (also known as the prior shift) [6],
[7] assumes PS(y) ̸= PT (y). Furthermore, recent works
have considered to learn domain invariant features for each
of these assumptions using deep neural networks including
generative adversarial models [8]–[11]. A method to learn
models from weakly labeled source samples is also proposed
for domain adaptation with cheaper labeling cost [12]. For
other domain adaptation methods, see [13], [14] and references
therein. These homogeneous domain adaptation methods rely
on the assumption that the source and target domains have the
same dimensionality; therefore, these methods are not directly
applicable when the source and target domains have different
dimensionalities.



2) Heterogeneous Domain Adaptation: On the other hand,
when the source and target domains have different dimension-
alities, the domain adaptation problem is called heterogeneous
domain adaptation. In the literature, several methods have
been proposed to solve heterogeneous domain adaptation
problems. However, most heterogeneous domain adaptation
methods [15]–[19] require at least partly labeled instances
from the target domain, and only a few unsupervised heteroge-
neous domain adaptation methods have been proposed [20]–
[22]. The common strategy for unsupervised heterogeneous
domain adaptation is to embed features from the source and
target domains to a space of the same dimensionality and
consider a homogeneous domain adaptation problem therein.
For example, spectral embedding [15], linear embedding [22],
and kernel canonical correlation analysis [20] are used for em-
bedding. However, since the features are mixed by embedding,
these methods cannot consider the homogeneity of features
when the source and target domains have common features.

A special case of heterogeneous domain adaptation called
hybrid domain adaptation is studied in [21], [23], [23], where
it is assumed that the source and target domains have common
features, and domain-specific features are also given for each
domain. To consider the homogeneity of the common features,
hybrid domain adaptation use the models to predict domain-
specific features from common features. The models learned
on one domain are used to estimate the unobserved domain-
specific features on the other domain. However, it is not
always possible to accurately estimate the domain-specific
features from the common features. For example, it is difficult
to estimate domain-specific features using simple regression
models when the distribution of domain-specific features given
the common features follow multi-modal distributions.

B. Optimal Transport for Domain Adaptation

Recent works apply OT techniques to match the source and
target distributions for domain adaptation [24]–[26]. Optimal
transport is a well-established mathematical theory [27] that
has been successfully applied to various machine learning
tasks involving the transport of a probability distribution.
Optimal transport for homogeneous domain adaptation makes
the assumption PS(y|x) = PT (y|T (x)) on the conditional
distribution, where T represents the transport mapping. How-
ever, this assumption does not hold in general; therefore, group
regularized OT [26] and JDOT [25], which leverages pseudo-
labels estimated using the model, are proposed to alleviate this
problem. In addition, some works have considered OT prob-
lems for heterogeneous feature spaces by defining the transport
cost between spaces of different dimensionalities [28], [29].
Although these methods are applicable for heterogeneous
domain adaptation, the cost functions defined in these methods
do not consider the homogeneity of features.

III. PROBLEM FORMULATION

A. Optimal Transport in Domain Adaptation

We begin with basics on OT. Let µ1 and µ2 be the
probability measure on a space Ω. Given a cost function

c : Ω×Ω→ R+, the OT problem is formulated as a problem
of seeking a coupling π ∈ Π(µ1, µ2) between µ1 and µ2 that
minimizes the total transport cost:

inf
π∈Π(µ1,µ2)

∫
Ω×Ω

c(x,x′)dπ(µ1, µ2), (1)

where x ∼ µ1 and x′ ∼ µ2. Here, Π(µ1, µ2) is the set of
couplings, that is, joint probability distributions with marginals
µ1 and µ2. In general, a distance function between the samples
is used as a cost function c.

In domain adaptation, OT is used to match the source
distribution PS and the target distribution PT . In particu-
lar, the OT problem for unsupervised domain adaptation is
formulated as OT between two marginal distributions PS(x)
and PT (x) under the assumption PS(y|x) = PT (y|T (x)),
where T represents an optimal transport map. However, this
assumption does not always hold; hence, JDOT [25] considers
the distance between features as well as discrepancy of the
labels as transport cost so that PS(x, y) and PT (x, y) are
better matched. Namely, the cost function c(x1, y1;x2, y2) =
αd(x1,x2) + L(y1, y2), where L is the discrepancy between
labels y1 and y2, is used for OT. Since the target label is
not observed in unsupervised domain adaptation, the label
estimated as ŷ = f(x) is used as a proxy of the target
label. The technique of using the output of the model as
the proxy of the true label is known as pseudo-labeling, and
a number of methods that use pseudo-labeling have been
proposed for various learning problems including unsupervised
domain adaptation [25], [30]–[36]. Furthermore, JDOT also
learns a model f that estimates the pseudo-label by minimizing
the cost in Eq. (1).

B. Domain Adaptation with Optimal Transport for Extended
Variable Space

We consider an unsupervised domain adaptation problem,
where both the source and target domains have common
features and extra features are observed in the target domain.
In this case, it is difficult to define the cost between the source
and target features because they are different dimensional
vectors. Here, instead of directly defining the cost between
the source and target variables, we consider to use the distance
between the common variables and the discrepancy between
the source label and target pseudo-label as JDOT. We remark
that the extra variables are considered by the pseudo-label.

Let Ωc×C be the source domain, which is a direct product of
the space of the common features, Ωc, and label space C. Also,
we define Ωt ≡ Ωc×Ωe, where Ωe is the space of the extra fea-
tures, and let Ωt×C be the target domain. Namely, the spaces
of the common features are identical in the source and target
domains, and the extra features are only observed in the target
domain. Note that even though the spaces of the common
features are identical, the distribution on Ωc can be different
between the source and target domains. Here, we denote the
probability distributions of the source and target domains as
PS(x

c, y) and PT (x
c,xe, y), respectively, or PS and PT for

short. Then, we define the training set DS = {(xc
si, ysi)}

Ns
i=1



that consists of samples (xc
si, ysi) ∼ PS . Similarly, we define

the test set by the partial observation DT = {(xc
ti,x

e
t,i)}

Nt
i=1

of a sample (xc
ti,x

e
ti, yti) ∼ PT (i = 1, . . . , Nt), where

the true label yti is not observed. Since the label y of the
target distribution is not observed, we define the estimated
target probability distribution as Pf

T (x
c,xe, ŷ), where the

label y is replaced by the pseudo-label ŷ = f(xc,xe).
Note here that Pf

T (x
c,xe) = PT (x

c,xe) holds for marginal
distributions. Similarly, we define the estimated test set Df

T =
{(xc

ti,x
e
ti, ŷi)}

Nt
i=1, where ŷi = f(xc

ti,x
e
ti).

To transfer the label information from the source domain to
the target domain, we consider the following problem:

π∗, f̂ = inf
π∈Π(PS ,Pf

T ),f∈F

∫
(Ωs×C)×(Ωt×C)

Eα(xc
s, ys;x

c
t ,x

e
t , yt)dπ(x

c
s, ys;x

c
t ,x

e
t , yt), (2)

where Π(PS ,Pf
T ) is the set of transportation plans between

the probability densities PS and Pf
T and F is a set of models.

Here, we use the following cost function for the transport:

Eα(xc
s, ys;x

c
t ,x

e
t , yt) ≡ αd(xc

s,x
c
t) + L(ys, yt), (3)

which is the sum of the distance between the common features
d(xc

s,x
c
t) and the discrepancy of the label L(ys, yt). Note

here that the extra feature xe
t is only used to estimate the

pseudo-label ŷ = f(xc,xe). Although the choice of the metric
d is arbitrary, here we assume that d is a square distance
d(xc

s,x
c
t) = ∥xc

s − xc
t∥22 for simplicity. Here, α ∈ R+ is

a hyperparameter that determines the relative importance of
d(xc

s,x
c
t) to L(ys, yt). By solving the above optimization

problem, the source labels are transferred to the target domain,
and model f ∈ F is trained to map the pair of common and
extra features to their corresponding transferred labels.

In practice, a finite number of samples obtained from the
source and target distributions can be used to solve the OT
problem. Therefore, instead of solving the OT problem prob-
lem between the source and target distributions, we consider
the discrete OT problem between the empirical distributions
of the training and test data. The optimization problem Eq. (2)
is rewritten as

π̂∗, f̂s = argmin
π̂∈Π̂(DS ,Df

T ),f∈F

Ns∑
i=1

Nt∑
j=1

π̂ijEα(xc
si, ysi;x

c
tj , ŷtj),

where ŷtj = f(xc
tj ,x

e
tj) and Π̂(DS ,Df

T ) is a set of discrete
OT plans from the dataset DS to the dataset Df

T , and is defined
as

Π̂(DS ,Df
T ) ≡

{
π̂ ∈ RNs×Nt

+

∣∣∣∑i π̂ij =
1
Nt

,
∑

j π̂ij =
1
Ns

}
.

This optimization problem is non-convex and computation-
ally intractable; therefore, alternating optimization is used to
solve the problem in the same manner as in conventional
methods that use pseudo-labeling. At the nth iteration, the
optimization problem with respect to π ∈ Π̂(DS ,Df

T ) with
fixed f̂

(n)
s ∈ F becomes a discrete OT problem, where the

transport cost Eα is calculated using the pseudo-label estimated

as ŷ(n)tj = f̂
(n)
s (xc

tj ,x
e
tj). When we calculate the transportation

cost as E
(n)
ij = Eα(xc

si, ysi;x
c
tj , ŷ

(n)
tj ), the optimization prob-

lem becomes linear programming with equality constraints as,

π̂∗
n = argmin

π̂∈Π̂(DS ,Df
T )

Ns∑
i=1

Nt∑
j=1

π̂ijE
(n)
ij

subject to
∑

i π̂ij =
1
Nt

,
∑

j π̂ij =
1
Ns

. (4)

This problem can efficiently solved using entropy regu-
larization and Sinkhorn-Knopp algorithm [37]. The model
f̂
(1)
s is not obtained for the first iteration; hence, the cost
E0(xc

s;x
c
t ,x

e
t ) ≡ d(xc

si,x
c
tj) is used instead of Eα only for

the first iteration.
Then, the optimization problem with respect to f with a

fixed nth OT plan π̂∗
n is solved to train model f , namely,

f̂ (n+1)
s = argmin

f∈F

Ns∑
i=1

Nt∑
j=1

(π̂∗
n)ijL(ysi, f(xc

tj ,x
e
tj)). (5)

In the above problem, there are cases in which different labels
are transferred onto one sample. In these cases, we regard the
transferred labels as soft labels that take values in [−1, 1].
Then, the transferred labels can be calculated by barycentric
mapping using π̂∗

n. When the distance between the common
features is the squared distance, we obtain

ỹt = diag(1⊤π̂∗
n)

−1(π̂∗
n)

⊤ys.

In particular, when the task is classification, the assigned labels
can be seen as soft class labels; however, to train model f , it
would be easier to use hard labels, which are estimated as

ȳtj =

{
sign(ỹtj) sign(ỹtj) ̸= 0

τ sign(ỹtj) = 0
, (6)

where P (τ = +1) = P (τ = −1) = 1/2. Then, the training
of the model Eq. (5) becomes the following simple training
process in the target domain:

f̂ (n)
s = argmin

f∈F

Nt∑
j=1

L(ȳtj , f(xc
tj ,x

e
tj)). (7)

The above algorithm using the hard labels is summarized as
Algorithm 1.

IV. THEORETICAL JUSTIFICATION AND ANALYSIS OF
PROPOSED ALGORITHM

In this section, the proposed method is analyzed mainly
from two perspectives. First, we give an interpretation of
our proposed method. Briefly, the main optimization problem
Eq. (2) of the proposed method is identical to the two-way OT
between the source and target domains under an assumption
that the conditional distributions of xe given xc and y in the
source and target domains are identical.

Then, a learning bound of the model f on the target domain
is derived. The conventional analyses of domain adaptation
methods based on OT [25], [38] give learning bounds that
mainly focuses on the Wasserstein distance between the source



Algorithm 1 Domain adaptation for extended variable space

Input: datasets DS ,DT , model set F
Output: Optimal transport plan π̂∗

N , trained model f̂ (N)
s

n← 1
while n < max iteration do

if n = 1 then
π̂∗
1 ← argmin

π∈Π̂(DS ,DT )

∑
i,j

πijE0(xc
si,x

c
tj)

else
π̂∗
n ← Optimization in Eq. (4).

end if
ỹt ← diag(1⊤π̂∗

n)
−1(π̂∗

n)
⊤ys

estimate hard labels ȳtj (j = 1, . . . Nt) by Eq. (6)
f̂
(n+1)
s ← argminf∈F

∑Nt

j=1 L(ȳtj , f(xc
tj ,x

e
tj))

n← n+ 1
end while

and target distributions. Although it is possible to extend
this upper bound for our algorithm, they become loose when
the Wasserstein distance between the source and target dis-
tributions becomes large even if it is possible to correctly
transfer source labels to the target domain. Moreover, the upper
bound does not consider how the model f is trained in the
target domain. On the other hand, we give an upper bound
that focuses on the training of the model f in this paper,
and the target error is upper bounded by the Rademacher
complexity and the Wasserstein distance between the estimated
and true target distributions. That is, the upper bound becomes
tight when the transferred source distribution is close to the
true target distribution, and the model can accurately predict
the transferred label. This interpretation gives an intuitive
understanding of the required conditions for the successful
domain adaptation.

A. Theoretical Justification of Proposed Algorithm

The main problem stated in Eq. (2) considers the trans-
portation from the source domain to the target domain. Let us
start with an ideal case that the common feature xc, the extra
feature xe, and the label y are observed in both the source
and target domains. Here, let xe

s be the extra features in the
source domain, which are not observed in practice. In this ideal
case, the domain adaptation becomes a homogeneous domain
adaptation problem, which is relatively easy to solve. The cost
function for the transportation is defined as

E∗α(xc
s,x

e
s, ys;x

c
t ,x

e
t , yt)

= αd((xc
s,x

e
s), (x

c
t ,x

e
t )) + L(ys, yt). (8)

Since this cost function is symmetric, the transportation be-
tween the source and target domains is invertible. However,
xe
s and yt are not observed in practice, making it necessary to

estimate these values. Although the label yt is substituted by
its estimated value ŷt = f(xc

t ,x
e
t ), the model to estimate the

extra feature xe
s is not considered in the proposed Algorithm 1.

Here, let us consider the estimation of xe
s. A straightforward

method of estimating xe
s is to transfer the information of xe

in the target domain to the source domain by OT. The cost
function for this transportation is defined as

Etsα (xc
t , yt;x

c
s, ys) = αd(xc

t ,x
c
s) + L(yt, ys). (9)

Owing to the lack of xe
s, the extra feature xe is only considered

with the estimated target label f(xc
s,x

e
t ) that is used to

substitute the unobserved target label yt. Here, an additional
assumption is made so that the distribution of the extra features
is estimated by OT using the above cost function, that is,

PT (x
e|xc, y) = PS(x

e|T (xc, y)), (10)

where T represents the OT of the common features xc and the
label y from the target distribution to the source distribution.
This assumption means that the conditional distribution of the
extra features xe given (xc, y) is identical before and after
OT of the common features xc and the label y. Under this
assumption, the target extra features can be transferred to the
source domain by OT.

After xe
s is estimated using the above OT, it is possible to

transfer the label information from the source domain to the
target domain by OT using the cost function Eq. (8). However,
under the assumption Eq. (10), there always exists a target
sample that has the same extra features xe as a source sample
at the destination of OT. In other words, when we solve the
OT problem for common features and labels, the transport cost
of the extra features is always minimized to zero. Therefore,
eventually, the estimation of the source extra feature is not
required, and solving the one-way OT problem Eq. (2) is
equivalent to solving the two-way OT problem.

B. Learning Bound of Trained Model on Target Domain

In this subsection, we show the learning bound of the model
f on the target domain. The upper bound derived here is
related to the upper bound derived in [25]. Their upper bound
focuses on the transportation between the source distribution
and the estimated target distribution that is solved for JDOT.
However, their upper bound does not take into account the
training of model f involved in the practical algorithm. On
the other hand, the upper bound derived here focuses on
training of the model f ; hence, our upper bound becomes
tighter with respect to the model. More specifically, the derived
upper bound consists of the Rademacher complexity of the
model set and the Wasserstein distance between the estimated
target distribution and the true target distribution. We remark
that although the Wasserstein distance between the estimated
target distribution and the true target distribution is contained
in the upper bound, the transportation between the source
and estimated target distributions is not considered explicitly.
Namely, instead of considering the training of the model,
our analysis does not consider how to estimate the target
distribution explicitly.

To begin with, we consider the probabilistic transfer Lips-
chitzness introduced in [25].

Definition 1 (Probabilistic Transfer Lipschitzness). Let µs and
µt be the source and target distributions, respectively, and



define ϕ(λ) : R → [0, 1]. A labeling function f : Ω → R
and a joint distribution π(µs, µt) over the distributions µs and
µt are ϕ-Lipschitz transferable if for all λ > 0,

Pr
(x1,x2)∼π(µs,µt)

[|f(x1)− f(x2)| > λd(x1,x2)] ≤ ϕ(λ).

The definition of probabilistic transfer Lipschitzness implies
that if two instances x1 and x2 are sufficiently close, the
probability that these instances have different labels is bounded
by ϕ(λ), where λ is inversely proportional to the closeness of
the instances.

To derive an upper bound, let PT̂ be the distribution that
estimates the true target distribution PT . Then, we define
the expected loss for a model f ∈ F with respect to each
distribution PT , PT̂ , as

errT (y, f) = E(xc,xe,y)∼PT
L(y, f(xc, xe)),

errT̂ (y, f) = E(xc,xe,y)∼PT̂
L(y, f(xc, xe)).

Also, let P̂T̂ be the empirical distribution that consists of
samples {(xc

i ,x
e
i , yi)}

Nt
i=1 that follow PT̂ . Then, the empirical

loss for model f with respect to P̂T̂ is defined as

êrrT̂ (y, f) =
1

m

m∑
i=1

L(yi, f(xc
i ,x

e
i )).

Let f0 and f̂s be the models that minimize the expected loss
errT (y, f) and the empirical loss êrrT̂ (y, f):

f0 = inf
f∈F

errT (y, f), f̂s = min
f∈F

êrrT̂ (y, f).

Now, we are ready to present our main result. Assume that
the following condition holds.

• The space of the target features, Ωt, is endowed with a
positive definite kernel K, and let H be its associated
reproducing kernel Hilbert space.

• The kernel K is bounded as supx∈Ωt
K(x,x) ≤ Λ2.

• The model set F is a ball of radius a in H, namely,
F = {f ∈ H | ∥f∥H ≤ a}.

• The loss function L
– is symmetric, L(y1, y2) = L(y2, y1),
– satisfies the triangle inequality, L(y1, y2) +
L(y2, y3) ≥ L(y1, y3),

– is Lipschitz continuous with constant k, |L(y1, y2)−
L(y1, y3)| ≤ k|y2 − y3|, and

– is bounded as L0 = supy∈C L(0, y) <∞.
• The optimal model f0 ∈ F0 is upper bounded as, for all

xc
1,x

e
1,x

c
2,x

e
2, |f0(xc

1,x
e
1)− f0(x

c
2,x

e
2)| ≤M .

• The optimal model f0 and the OT plan π∗ from PT̂ to
PT satisfy the ϕ-probabilistic transfer Lipschitzness.

We remark that F ̸= F0 in general. Then, our main result is
summarized as follows.

Theorem 1. Under the above assumptions, let f̂s ∈ F be
the trained model that minimizes the empirical loss êrrT̂ of
the distribution PT̂ that estimates the true target distribution.

Then, for all λ > 0 with α = kλ, for any δ ∈ (0, 1) with
probability at least 1− δ,

errT (y, f̂s) ≤ êrrT̂ (f̂s, y) +
2kaΛ√
Nt

+ (L0 + kaΛ)

√
ln(1/δ)

Nt

+W (PT̂ ,PT ) + 2 errT (y, f0) + kMϕ(λ),

where W (PT̂ ,PT ) is the Wasserstein distance between the
estimated target distribution and the true target distribution
and is defined as

W (PT̂ ,PT ) = inf
π∈Π(PT̂ ,PT )

∫
(Ωt×C)2

E∗α(xc
1,x

e
1, y1;x

c
2,x

e
2, y2)dΠ(xc

1,x
e
1, y1;x

c
2,x

e
2, y2).

The sketch of the proof is as follows. First, we consider the
difference of the expected loss and its upper bound by trian-
gular inequality errT (y, f̂s) − errT (y, f0) ≤ errT (f̂s, f0) ≤
errT̂ (y, f̂s) + errT̂ (y, f0). The first term is upper bounded by
the Rademacher complexity based on uniform law of large
numbers [39]. Then, the second term is upper bounded by
the similar upper bound as the bound shown in [25]. Here, we
consider the Wasserstein distance between the estimated target
distribution and the true target distribution, because calculation
of the distance between the source and target distributions is
not possible due to the difference of the dimensionality. The
complete proof is omitted due to the limitation of space, and
will be presented in a full paper, to be released later. When
we assume PT̂ = Pf

T , the upper bound corresponds to Algo-
rithm 1. The above upper bound is divided into three parts.
The first part, êrrT̂ (f̂s, y)+

2kaΛ√
Nt

+(L0+kaΛ)
√
ln(1/δ)/Nt,

is an upper bound based on the Rademacher complexity and
estimates errT̂ (f̂s, y) from a finite number of samples that
follow PT̂ . In addition, f̂s is obtained by minimizing êrrT̂ ;
hence, these terms are minimized in terms of the model f ∈ F .
The second part, W (PT̂ ,PT ), is the discrepancy between the
estimated and true target distributions. This distance becomes
small if the estimated target distribution is close to the true
target distribution irrespective of the distance between the
source and target distributions. Namely, this term focuses on
the transferability of the source label information to the target
domain and is more plausible as a term of an upper bound
than the distance between the source and target distribution
itself. The last part, 2 errT (y, f0)+kMϕ(λ), is determined by
the predictability of the target distribution and the probabilistic
transfer Lipschitzness of model f0; hence, these terms are con-
sidered constants that depend on the problem. In conclusion,
the upper bound becomes tight when the estimated and true
target distributions are close, and the model can accurately
predict the transferred label.

V. NUMERICAL EXPERIMENTS

In this section, we present experimental results of domain
adaptation problems for the observation of extra features
using both synthetic and real data. We used Python Optimal
Transport (POT) [40] in the following experiments, and codes
are publicly available at https://github.com/t-aritake/DAEVS.

https://github.com/t-aritake/DAEVS


A. Experiments with Synthetic Data

In this subsection, we show experimental results obtained
with synthetic data. In this experiment, unsupervised domain
adaptation for a binary classification problem is considered.
We assume the circular dataset shown in Fig. 2 as the true
source and target datasets. Here, both the common and extra
features are one-dimensional for the purpose of visualization,
and the extra features in the source domain and the labels in
the target domain are not used for the classification. We set the
number of samples to be Ns = 1, 000 and Nt = 100 for the
source and target domains, respectively. The dataset of each
domain contains the same number of positive and negative
samples.

We compared our proposed method with JDOT [25], which
ignores the extra variable xe, heterogeneous domain adaptation
using canonical correlation analysis (CCA) [20], and domain
specific feature transfer (DSFT) [21]. Also, JDOT in the ideal
situation, where the extra variable is observed in both source
and target domains, is used as a benchmark for the optimal
performance. We assume that the class set F is the set of
support vector machines (SVMs) with a Gaussian kernel for
all methods. We use the training loss of SVMs as L, which is
a surrogate loss of 0-1 loss, and set the balancing parameter α
of Eq. (3) to α = 0.1, which was experimentally determined.

The classification accuracy for the proposed method, JDOT
ignoring the extra variable, and the optimal benchmark, which
is JDOT with extra variable, is shown in Table I. We generated
10 different random datasets, where each dataset is similar
to the two-circle dataset in Fig. 2. Then, we calculated the
average prediction accuracy and its variance of the transferred
label (transfer) and the estimated target label using the trained
model f (model) for our proposed method and JDOT-based
method. We evaluated these values because it is possible to
build an accurate model from partly incorrectly transferred
labels, or conversely, there is possibility to build an inaccurate
model from the correctly transferred labels. Also, Fig. 3 shows
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Fig. 2: Example of the true dataset used in the experiment.
Triangles show positive samples and crosses show negative
samples. The center of the dataset is different in the source
and target domains, and the shape of the circle is also slightly
different. The xe of the source samples and the labels of the
target samples are not accessible in the experiment.

the decision boundary of a trained model in the target domain
obtained by the proposed method. From Table I, we can see
that our proposed method outperforms other methods. The
target distributions have better separability due to the existence
of extra features; therefore, it is difficult to embed the source
and target distributions into the same dimensionality properly.
Also, the extra distribution PT (x

e|xs) is multimodal; hence,
it is difficult to estimate the source extra feature from the
common feature by regression.

Also, we can see that our proposed method outperforms
JDOT without an extra variable, and the model accuracy is
higher than the transfer accuracy in both methods. Since the
marginal distribution P(xc) of the positive and negative class
are highly overlapped, as can be seen in Fig. 2, it is difficult
to build a model that accurately predicts the label only from
the common feature. On the other hand, our proposed method
accurately estimated the true target labels by OT. Furthermore,
as shown in Fig. 3, even when some of the labels are not
correctly transferred, the trained model is able to estimate the
true target labels accurately.

Intuitively, our proposed method recovers the true target
distribution PT (x

c, xe, y) from the source marginal distribu-
tion PS(x

c, y) and the target marginal distribution PT (x
c, xe).

In this problem, PT (x
c, y) is estimated from PS(x

c, y) by
OT and PT (x

c, xe) is known. Still, it is not possible to
recover PT (x

c, xe, y) since PT (x
e|xc, y) is not known. Then,

the OT problem of our proposed method can be seen as a
process to estimate PT (x

e|xc, y) through the transportation
cost L(ysi, f(xc

tj ,x
e
tj)) based on the model f . Note, however,

that estimability of PT (x
e|xc, y) depends on the structure

of the true target distribution, especially, complexity of the
model and the (probabilistic) Lipschitzness of the true labeling
function. A detailed analysis of the required conditions for the
success of the estimation is left for our future work.
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Fig. 3: Transferred labels in the target domain and the obtained
decision boundary of the learned model.

TABLE I: Accuracy with synthetic data

Proposed JDOT
no extra

CCA DSFT JDOT
ideal

transfer 92.6
(3.80)

84.6
(3.41)

- - 96.3
(3.44)

model 99.4
(1.28)

85.0
(2.10)

73.9
(10.3)

55.7
(2.34)

100
(0.00)



B. Experiments With Real Data

In this subsection, we show experimental results obtained
with real data. We used the gas sensor array drift dataset used
in [41]. The original data are 16-channel time series obtained
by measuring one of six gases at different concentration levels
using an array of 16 gas sensors. The dataset consists of 10
batches, where the samples in each batch are obtained for a
different month and are affected by different levels of sensor
drift; hence, each batch can be used as a dataset of different
domains. We used the first four batches and considered a
domain adaptation problem between these batches. Also, we
consider the binary classification problem to classify only two
types of gases, ethanol and ethylene, out of the six types
of gases. We used the six transient features extracted from
each sensor for classification. We selected eight out of 16
sensors, and transient features extracted from these sensors
are used as common features, while the features extracted
from the rest of the sensors are used as extra features. Here,
the sensors used to extract common features are selected so
that the extra features make the classification more accurate.
Although, in practice, it is possible that the extra features do
not contribute to the accuracy of the classification, here, we
considered the reasonable scenario that informative features
for the classification are observed as extra features.

Table II shows the prediction accuracy in the target domain
for each domain adaptation problem. The row of domains
A → B shows the experimental results where batch A
and batch B are used as the source and target domains,
respectively. The Baseline column shows the prediction ac-
curacy on the test data without domain adaptation. Namely,
the baseline model is learned using only common features
given in the source domain. Similarly, the model accuracies of
JDOT, CCA-based heterogeneous domain adaptation, DSFT,
the proposed method, and the optimal benchmark are shown in
the table. As we can see from the table, some domains do not
require domain adaptation, and the baseline model outperforms
JDOT and the proposed method. However, for other domains,
the prediction accuracy is largely improved by considering
domain adaptation by OT. In addition, the proposed method
outperforms JDOT in most domains using the informative
extra features. Also, in some cases, the proposed method
outperforms optimal benchmark. This result suggests that, not
all features may contribute to the accurate estimation of the
target distribution by OT for the real data.

VI. CONCLUSION

In this paper, we considered the domain adaptation problem
in which common features are observed in both the source and
target domains, and extra features are observed only in the
target domain. We proposed an unsupervised heterogeneous
domain adaptation method based on JDOT to effectively utilize
the extra features for better estimation of the target labels.
We showed that our proposed method is equivalent to the
two-way OT to transfer extra features and labels between the
domains under the assumption that the conditional distribution
of extra features given common features, and . Also, we

TABLE II: Accuracy for real data

domains Baseline JDOT
no extra

CCA DSFT Proposed JDOT
ideal

1→ 2 83.33 77.71 66.87 42.97 78.31 83.73
1→ 3 52.28 93.45 43.27 57.78 96.02 94.15
1→ 4 64.49 60.75 58.88 94.39 87.85 85.98
2→ 1 52.13 79.26 56.91 62.77 84.04 85.64
2→ 3 56.84 89.36 25.03 84.56 89.47 90.99
2→ 4 63.55 69.16 51.40 41.12 71.96 74.77
3→ 1 51.06 92.02 92.55 66.49 94.15 95.74
3→ 2 68.67 81.92 67.67 86.94 88.76 88.55
3→ 4 94.39 77.57 96.26 40.19 81.31 80.37
4→ 1 50.00 52.66 48.93 51.60 53.72 80.85
4→ 2 42.97 71.08 32.93 32.93 74.30 73.89
4→ 3 92.98 82.81 57.31 42.69 82.57 82.57

derived a learning bound of the model in the target domain on
the basis of the Rademacher complexity and the Wasserstein
distance between the estimated and true target distributions.
The experimental results demonstrate the ability to estimate a
distribution close to the true target distribution by the proposed
method, hence the better target model is obtained.

The accurate estimation of the true target distribution is
not always possible, and the conditions for the success of
the estimation by the proposed method are not yet fully
understood. The analysis of such conditions is important future
work. Furthermore, the case where some of the features in
the source domain become unobservable (because of, e.g.,
mechanical breakdown of sensors) should also be discussed
as a future extension of the proposed method.
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[28] G. Peyré, M. Cuturi, and J. Solomon, “Gromov-wasserstein averaging of
kernel and distance matrices,” in Proceedings of The 33rd International
Conference on Machine Learning, vol. 48, New York, USA, 20–22 Jun
2016, pp. 2664–2672.

[29] V. Titouan, I. Redko, R. Flamary, and N. Courty, “CO-Optimal Trans-
port,” in Advances in Neural Information Processing Systems, vol. 33.
Curran Associates, Inc., 2020, pp. 17 559–17 570.

[30] D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Workshop on challenges
in representation learning, ICML, vol. 3, no. 2, 2013, p. 896.

[31] B. B. Damodaran, B. Kellenberger, R. Flamary, D. Tuia, and N. Courty,
“DeepJDOT: Deep joint distribution optimal transport for unsupervised
domain adaptation,” in Proceedings of the European Conference on
Computer Vision (ECCV), September 2018.

[32] Y. Zou, Z. Yu, B. V. Kumar, and J. Wang, “Unsupervised domain
adaptation for semantic segmentation via class-balanced self-training,” in
Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

[33] I. Shin, S. Woo, F. Pan, and I. S. Kweon, “Two-phase pseudo label
densification for self-training based domain adaptation,” in Computer
Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part XIII, ser. Lecture Notes in Computer
Science, vol. 12358. Springer, 2020, pp. 532–548.

[34] S. Xie, Z. Zheng, L. Chen, and C. Chen, “Learning semantic rep-
resentations for unsupervised domain adaptation,” in Proceedings of
the 35th International Conference on Machine Learning, ICML 2018,
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