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Single-molecule localization microscopy is a widely used technique in biological research for measuring
the nanostructures of samples smaller than the diffraction limit. This study uses multifocal plane micro-
scopy and addresses the three-dimensional (3D) single-molecule localization problem, where lateral and
axial locations of molecules are estimated. However, when multifocal plane microscopy is used, the esti-
mation accuracy of 3D localization is easily deteriorated by the small lateral drifts of camera positions. A
3D molecule localization problem was presented along with the lateral drift estimation as a compressed
sensing problem. A deep neural network (DNN) was applied to solve this problem accurately and effi-
ciently. The results show that the proposed method is robust to lateral drift and achieves an accuracy
of 20 nm laterally and 50 nm axially without an explicit drift correction.

� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fluorescence microscopy is a widely used technique in biologi-
cal research to analyze in vivo structures of samples. However,
owing to the diffraction limit of light, the resolution of conven-
tional fluorescence microscopy is limited to approximately
200 nm laterally and 500 nm axially. To overcome this diffraction
limit, several super-resolution microscopy methods [1], including
single-molecule localization microscopy (SMLM) [2,3], have been
proposed. The fundamental problem in super-resolution micro-
scopy is estimating the true molecular distribution from an
observed image. In SMLM, only a few molecules are activated at
one time using photoactivatable molecules. Therefore, the posi-
tions of the activated molecules can be accurately estimated using
a localization algorithm, such as Gaussian fitting. Then, a high-
resolution image can be obtained by integrating the localization
results from many frames into one image.

In many biological studies, three-dimensional (3D) imaging
techniques are important for observing the 3D structures of sam-
ples and various 3D fluorescence microscopy techniques have been
proposed [4]. In the past decade, SMLM methods have also been
extended to achieve 3D super-resolution. The most commonly
used method for 3D SMLM is point spread function (PSF) engineer-
ing. In particular, several types of filters [5–7] have been proposed
to achieve 3D localization. In these methods, the 3D locations of
molecules are estimated from the differences in the shape of the
PSFs. Hence, additional instruments, such as a cylindrical lenses
or phase masks, are required for the optical system, and, the recon-
figuration of the optical system for other applications is difficult.

Meanwhile, multifocal plane microscopy (MUM) [8,9], which
we used in this work, is a simple extension of two-dimensional
(2D) SMLM to 3D using multiple cameras. Fig. 1(a) shows the
MUM using four cameras. The 3D locations of the molecules are
estimated by the images obtained frommultiple focal planes. Addi-
tional instruments are not necessary for MUM; thus, the optical
layout is simple, and the reconfiguration of the optical system for
other applications is relatively easy. However, another problem
arises in 3D SMLM using MUM: any lateral drift in the camera posi-
tions affects the localization quality. When we use MUM, the cam-
era positions may have sub-pixel-sized lateral drift as shown in
Fig. 1(b). Because images from the focal planes are obtained
through the same objective lens, the focal planes do not share iden-
tical coordinate systems owing to the lateral drifts. The locations of
the molecules are estimated from the observations from each focal
plane, which is affected by the lateral drift; hence, the drift in the
camera positions make the estimation less accurate.
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Fig. 1. (a) Ideal multi-focal plane microscopy. Images are simultaneously obtained at each focal plane using an objective lens, and the lateral coordinates of the focal planes
are identical. (b) Lateral drift in MUM. Owing to the lateral drift, the lateral coordinates of the focal planes are not identical.

T. Aritake, H. Hino, S. Namiki et al. Neurocomputing 451 (2021) 279–289
Therefore, for an accurate localization of the molecules, it is
essential to compensate for the effect of lateral drift. The MUM
proposed in [9] used a cross-correlation approach [10,11] to cor-
rect drift between cameras. However, the cross-correlation
approach corrects the drift of specimens from a set of localization
results at certain time intervals. Then, the molecules must be local-
ized from the observed image obtained from each focal plane inde-
pendently. Therefore, MUM information is not completely used to
localize molecules. Moreover, additional computational cost is
required to correct the drift when localizing the molecules.

In this study, we formulated the simultaneous 3D molecule
localization and lateral drift correction as a compressed sensing
problem [12]. Our formulation uses observed images that are
obtained from different focal planes simultaneously and takes
advantage of the benefits of MUM for molecule localization and
drift correction. By addressing this problem, the locations of mole-
cules are accurately estimated. However, as the size of the input
images becomes larger or the target resolution of the localization
becomes higher, the problem becomes intractable owing to its high
computational cost.

Recently, deep neural networks (DNNs) have been successfully
applied to a variety of inverse problems in imaging [13]. Conven-
tionally, inverse problems in imaging were formulated as com-
pressed sensing problems and solved by iterative optimization,
which has a high computational cost. Instead of solving the opti-
mization problem iteratively, DNNs use deeply layered networks
and approximate the inverse of the observation process by learning
the mapping from observations to their corresponding inputs.
Intuitively, many iterations of optimization are replaced by a smal-
ler number of trained layers as unrolling methods [14,15].

Recently, DNNs have also been applied to inverse problems of
SMLM, such as molecule localization [16–20], colorization [21],
and background estimation [22]. Specifically, convolutional neural
networks (CNNs) have achieved a remarkable speedup in 2D and
3D molecule localization. Although training a neural network
requires a large amount of training data, and the training process
can take several hours to several days, the trained network can
estimate the molecule locations accurately and efficiently. More-
over, an infinite amount of training data can be generated using
an approximated PSF; hence, DNNs are suitable for SMLM.

Here, a CNN was also used to estimate the locations of mole-
cules, along with the lateral drift of cameras instead of solving a
compressed sensing problem by an iterative algorithm. We pro-
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pose a CNN which stacks several deconvolution layers which are
used in fast super-resolution convolutional neural network
(FSRCNN) [23] for the single image super-resolution of natural
images. The architecture of this network is based on the iterative
algorithm to solve the compressed sensing problem as unrolling
methods. Namely, when we used iterative optimization to solve
the compressed sensing problem of molecule localization, the res-
olution of an input image was enhanced at each iteration. There-
fore, the proposed network stacks several deconvolution layers
so that the resolution of an input image is enhanced at each layer.
As opposed to the super-resolution of natural images, which
restores the edges or the textures of an image, the molecule local-
ization only requires to estimate the locations of molecules in an
observed image. Therefore, we reformulated the molecule localiza-
tion problem as a binary classification problem where the network
estimates whether a molecule exists in a given pixel of the target
resolution. In addition, this network is trained to be robust to lat-
eral drifts in camera positions using the dataset which considers
the effect of lateral drifts so that the network can localize mole-
cules accurately without explicit drifts correction. Then, we use
the trained network to estimate molecule locations in an observed
image.

Our contributions are summarized as follows. First, we formu-
late the 3D molecule localization problem using MUM as a com-
pressed sensing problem to clarify the inverse problem that we
attempt to address in this study. To cope with lateral drift in
MUM, the problem aims to estimate the locations of molecules
and the amount of lateral drifts of cameras. Then, we point out that
the problem becomes intractable owing to the high computational
cost when the size of the input images becomes larger or the target
resolution of the localization becomes higher. Second, we use CNN
to solve the inverse problem approximately, which significantly
reduces the computational cost of solving the problem. In addition,
this network is trained to be robust to the lateral drift in camera
positions. Therefore, the network correctly estimates the molecule
distribution from the given input image without explicitly estimat-
ing the extent of lateral drift. To the best of the authors’ knowledge,
this work is the first attempt to tackle the problem of lateral drifts
in MUM for SMLM.

The rest of this paper is organized as follows. The observation
model and the formulation of the single-molecule localization
problem using MUM are explained in Section 2. Then, the problem
of the molecule localization using MUM and the details of the
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proposed method are presented in Section 3. In the experiments,
we used quad-plane microscopy as our MUMmethod. The detailed
experimental setup and experimental results that validate the pro-
posed algorithm are discussed in Section 4. Finally, our concluding
remarks and the discussion are provided in Section 5.
2. Formulation

2.1. Observation model

In this study, we used MUM to observe a sample in the target
3D space. The MUM allows the simultaneous imaging at k focal
planes in the target 3D space using an objective lens. A conceptual
diagram of MUM when k ¼ 4 is shown in Fig. 2(a). The intensities
of fluorescence are observed as a Wl � Hl image at each focal plane
in the 3D space. Owing to the diffraction limit, low-resolution
images are obtained from the focal planes. Hence, we call a set of
k observed images as a low-resolution image set.

Let yl ¼ ðyl1; yl2; . . . ; ylnÞ 2 Rn be a low-resolution image set
obtained using MUM, where yli is the observed fluorescence inten-
sity at the i-th observation coordinate xl

i ¼ ðxli1; xli2; xli3Þ 2 R3, and
n ¼ kWlHl. Note that xl

i is a coordinate on one of the k focal planes;
hence xi3 2 fd1; d2; . . . ; dkg, where dz ðz ¼ 1;2; . . . ; kÞ is the depth of
the z-th focal plane. The observed image yl is a convolution of the
true molecule density and the PSF which depends on the optical
system of a microscope. Therefore, yl can be approximated by a lin-
ear equation as

yl � H�c�; ð1Þ

where H� 2 Rn�K is an observation matrix. The j-th column of H� is
fluorescence from the j-th molecule, and K is the number of mole-
cules in an image set. The vector c� ¼ ðc�1; c�2; . . . ; c�KÞ 2 RK is a mole-
cule distribution, where c�j ðj ¼ 1; . . . ;KÞ represents the weight of
the intensity of the j-th molecule.

In theory, the true coordinates of molecules can be used to gen-
erate H�; however, they are not given or known in advance.
Instead, we assumed that the target resolution is given. Hence,
we divided a target 3D space into m ¼ Wh � Hh � Dh voxels at
the target resolution, as shown in Fig. 2 (b). We considered all
molecules located at the center of voxels and generated observa-
tion matrix H 2 Rn�m, instead of H�, where m � K. We used H
Fig. 2. (a) Illustration of multi-focal plane microscopy observing a sample in 3D space.
centers of the voxels are used to approximate an observation. The molecules of the fron
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and corresponding molecule distribution c ¼ ðc1; c2; . . . ; cmÞ 2 Rm

to approximate the observation yl. Here, most of the elements of
c are zeros, and weight cj is nonzero if a molecule is contained in
the j-th voxel. We denote the coordinate of the center of the j-th
voxel by xh

j ðj ¼ 1;2; . . .mÞ.
Then, the ði; jÞ-element of matrix H is the fluorescence from a

molecule at xhj , observed at xli, and can be written as hðxli; xh
j Þ, where

h is a PSF.

H ¼

hðxl1; xh1Þ � � � hðxl1; xhmÞ
hðxl2; xh1Þ � � � hðxl2; xhmÞ

..

. . .
. ..

.

hðxln; xh1Þ � � � hðxln; xhmÞ

2
666664

3
777775
2 Rn�m

We assumed that an observed image contains both shot noise
and additive observation noise. The shot noise follows a Poisson
distribution, whereas the observation noise follows a Gaussian dis-
tribution for each observation independently. Hence, the observa-
tion can be modeled as

yl ¼ Hc þ �: ð2Þ
where � is composed of shot noise and observation noise.

Now, the problem of molecule localization is to estimate the
weights cj for all j ¼ 1;2; . . .m from a low-resolution image set yl.
Here, the observation matrix H is an overcomplete matrix
ðn < mÞ; thus, coefficient vector c cannot be recovered by minimiz-
ing the noise in Eq. (2). We assum that c is a sparse vector, where
most of the elements are zeros; therefore, c can be recovered by
solving the following problem:

minimize
c

kyl � Hck22 þ kkck1; ð3Þ

which is known as Lasso (see [24] and the references therein). This
type of inverse problem is known as compressed sensing [12].

2.2. 3D PSF

In the above formulation, the true PSF h is also not known gen-

erally; therefore, we used a parametric function, ĥ, to approximate

h, and an approximated observation matrix, Ĥ, to solve Eq. (3). The
PSF of MUM is modeled based on the following function:
(b) 3D space divided into voxels at the target resolution. Molecules located at the
tmost voxels are shown by the blue circles.



Fig. 3. Width of the observed fluorescent beads and values of the defocus curve. The
observed widths of the fluorescent beads at each depth are indicated by circles. The
red line shows the value of the defocus curve that approximates the width using the
parameters in the Table 1.
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ĥðxli; xhj Þ ¼ ĥðxli1; xli2; xli3; xhj1; xhj2; xhj3Þ

¼ aðxli3 � xhj3Þ exp � ðxl
i1
�xh

j1
Þ2þðxl

i2
�xh

j2
Þ2

2wðxl
i3
�xh

j3
Þ

� �
þ b;

ð4Þ

where a is the peak fluorescence intensity,w is the squared width of
the fluorescence, and b is the background fluorescence intensity.
This PSF is similar to the PSF used in [25] for biplane microscopy.
The squared width wðx3Þ of the PSF varies depending on the dis-
tance between a molecule and the focal planes; it is described by
the following defocus curve:

wðx3Þ ¼ w2
0 1þ x3

d

� �2
þ A

x3
d

� �3
þ B

x3
d

� �4
� �

;

where w0 is the width of the PSF when a molecule is on the focal
plane and d is the focus depth of the microscope. Peak a of the
PSF depends on the width wðx3Þ and is modeled as:

aðx3Þ ¼ a0

2pwðx3Þ2
: ð6Þ

The parameters a0; b;d;A, and B are determined as listed in Table 1
using a set of images of fluorescent beads obtained from different
depths. Namely, these parameters are fitted to a small number of
real observations, so that Eq. (4) is close to the real observations.
Fig. 3 shows the width of the observed fluorescent beads and the
values of the defocus curve (5).

2.3. Lateral drift of the focal planes

When we used MUM to localize the molecules, we must con-
sider the lateral drift of the focal planes. Otherwise, the estimation
accuracy of the localization becomes deteriorated because the
appropriate observation matrix H varies depending on the drift.

Let Dz1 and Dz2 2 Z ðz ¼ 1;2; . . . ; kÞ be the amount of lateral drift
along the horizontal and vertical axes of the z-th focal plane,
respectively. In this study, we only considered high-resolution
voxel-level lateral drifts. The drift vector is written as
Dz � ðDz1;Dz2;0Þ. The PSF was defined in Eq. (4), and the following

equation holds for ĥðxl
i; x

h
j Þ:

ĥðxli þ Dz; xhj Þ ¼ ĥðxli; xhj � DzÞ; ð7Þ

where the observation coordinates xl
i is on the z-th plane. This equa-

tion implies that the observation from the molecule at xh
j with a lat-

eral drift of Dz is identical to the observation from the molecule at
xh
j � Dz without any lateral drift. As the observation from each plane

is affected by each drift in camera position, the locations of a mole-
cule estimated from the images obtained from each focal plane are
not identical. However, the problem Eq. (3) considers all focal
planes to estimate the location of a molecule. Hence, unless we
quantify the amount of lateral drift for each plane, the true mole-
cule position cannot be correctly estimated even when a single
molecule exists in the 3D space.
Table 1
PSF parameters.

Parameter Value

a0 5:00� 107

b 0
w0 1:33� 102

d 3:02� 102

A 7:37� 10�4
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Further, based on Eq. (7), if Dz is the same for all z ¼ 1;2; . . . ; k,
we cannot distinguish whether the amount of lateral drifts is Dz or
true location of the molecule is xhj � Dz, even when we use the
images of all planes. Instead, we estimated the relative lateral drift
D0

z ¼ Dz � D1 ðz ¼ 2; . . . ; kÞ from a reference plane z ¼ 1. In this
study, the amount of relative lateral drift, as well as the molecule
positions, were estimated at a high-resolution voxel level.
3. Method

3.1. Compressed sensing with lateral drift estimation

When solving the molecule localization problem stated in Eq.
(3), the lateral drift of the focal planes should be considered to esti-
mate the molecule location accurately. The approximated observa-

tion matrix Ĥ varies depending on the lateral drift; hence, the

approximated observation matrix Ĥ can be modified so that the
molecule location is correctly estimated.

By ordering the rows of the observation matrix Ĥ based on the

axial position xli3 of the observation coordinate xli ði ¼ 1;2; . . .nÞ, Ĥ
becomes a block matrix

Ĥ ¼

Ĥ1

Ĥ2

..

.

Ĥk

2
66664

3
77775; ð8Þ

where each submatrix Ĥz 2 Rn0�m represents the observation matrix
of the z-th focal plane and n0 ¼ n

k. As the lateral drift affects each
plane independently, the drift of each block can be considered indi-
vidually. Submatrices shifted by D0

z ðz ¼ 2; . . . ; kÞ are written as
follows:

ĤzðD0
zÞ �

ĥðxl1 � D0
z; x

h
1Þ � � � ĥðxl1 � D0

z; x
h
mÞ

ĥðxl2 � D0
z; x

h
1Þ � � � ĥðxl2 � D0

z; x
h
mÞ

..

. . .
. ..

.

ĥðxln0 � D0
z; x

h
1Þ � � � ĥðxln0 � D0

z; x
h
mÞ

2
666664

3
777775
:

Here, we consider the maximum amount of shift is given as a
hyperparameter.
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Now, the problem is to estimate both the lateral drifts and the
molecule locations from the observation yl, which can be formu-
lated as:

minimize
fctgTt¼1 ;fD0

zgkz¼2

XT
t¼1

kyl
t � ĤðfD0

zgkz¼2Þctk2F þ kkctk1
� �

; ð9Þ

where

ĤðfD0
zgkz¼2Þ ¼

Ĥ1

Ĥ2ðD0
2Þ

..

.

ĤkðD0
kÞ

2
666664

3
777775
: ð10Þ

Here, we considered T images simultaneously to ensure that the
amount of lateral drifts is correctly estimated from the images. As
we assumed that only a small number of molecules exist in the tar-
get 3D space, estimating all the lateral drifts from a single image is
not always possible.

However, the optimization problem above has a high computa-
tional cost because we need to consider all the possible pairs of lat-
eral drifts to obtain an optimal solution. Although this problem can

be solved by alternating the optimization of fcgTt¼1 and fD0
zgkz¼2 to

obtain a sub-optimal solution, the optimization of fctgTt¼1 has an
increasingly high computational cost as the input image size
becomes larger or the target resolution of the molecule localization
becomes higher. Moreover, the optimization with respect to fctgTt¼1

is solved using an iterative algorithm. The slow computational
speed prevents us from applying 3D SMLM using MUM for interac-
tive observation. Therefore, a faster method for solving the opti-
mization problem is required to obtain a super-resolution image
within a reasonable computational time.

3.2. Convolutional neural network (CNN)

In this study, we used a CNN to reduce the computational cost
to solve the optimization problem Eq. (9). We assumed that the
resolution of the input and output images is given, and the scaling
factor is 8� along each axis and the number of focal planes is k ¼ 4
henceforth. As the other SMLM methods using DNNs [16–20], the
CNN was used to reduce the computational cost of the optimiza-
tion with respect to ct .

We propose a CNN which is composed of several convolution
layers and deconvolution layers, as shown in Fig. 4. The main
building blocks of the network are the deconvolution layers, which
are used in FSRCNN [23] for single image super-resolution of nat-
ural images. Unlike FSRCNN, which uses only one deconvolution
Fig. 4. Network architecture
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layer at the last layer, the first convolution layer extracts features
from an input image, followed by the three deconvolution layers.
As we assume that the scaling factor is 8�, based on the doubling
the lateral resolution of an input image at each layer, we used three
deconvolution layers. For these layers, we also used a rectified lin-
ear unit, also known as ReLU, as our activation function, followed
by batch normalization layers [26], to enhance the training speed
and the estimation accuracy for these layers. For the last layer of
the network, a convolution layer followed by a sigmoid function
is used to obtain a set of images for the target axial resolution.
Unlike a natural image super-resolution task, the localization prob-
lem in Eq. (3) aims to estimate the existence of a molecule in each
high-resolution voxel. Hence, the network outputs the probability
of the existence of a molecule in each voxel using a sigmoid func-
tion as an activation function. In other words, at the last layer of
the network, the binary classification problem, where the network
estimates whether a molecule exists or not, is solved for each
voxel.

The architecture of the proposed network is based on iterative
optimization to solve the compressed sensing problem Eq. (9),
and the proposed network can be seen as one of the unrolling
methods [14,15]. When we used iterative optimization to solve
the compressed sensing problem, as in Eq. (9), each iteration
enhances the resolution of the estimated output. Namely, a decon-
volution problem is solved and an input image is upsampled and
deblurred at each iteration. Therefore, to mimic the iterative
deconvolution process, we stacked deconvolution layers so that
the resolution of a low-resolution input image is doubled at each
deconvolution layer while features for the localization are
extracted. Intuitively, many iterations of optimization algorithm
are replaced by a smaller number of trained layers as unrolling
methods.

The input of the network is the observed low-resolution image
that is possibly affected by the drift in camera positions, and the
output is the estimated molecule distribution. The network was
trained to minimize the error between the true molecule distribu-
tion and the distribution which is estimated from the observed
image. In addition, the network was trained to be robust to the lat-
eral drifts in camera positions so that the trained network can cor-
rectly estimate the molecule distribution without explicitly

estimating the amount of lateral drifts fD0
zgkz¼2. To train the robust

network, artificial data which are affected by the random lateral
drifts are used and parameters of the network are optimized to
localize molecules from images that are affected by the lateral
drifts.

Let p ¼ ðp1; p2; . . . pmÞ be the ground-truth molecule existence
probability for each voxel, where
of the proposed model.



Fig. 5. Optical layout of the quad-plane microscope. The intermediate image is
relayed onto each camera via a pair of lenses (L1, f = 125.0 mm; L2, f = 100.0 mm).
TL, tube lens; M1, 1:1 beam-splitter mirror. The inset shows the focusing planes of
four cameras.
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pj ¼
0 cj ¼ 0;
1 cj > 0;

�
ð11Þ

and let q ¼ ðq1; q2; . . . ; qmÞ be the probability of the existence of a
molecule as estimated by the CNN. As the network solves the binary
classification problem at each voxel, we used the sum of the binary
cross-entropy (BCE):

‘ðp;qÞ ¼
Xm
j¼1

�pj logðqjÞ � ð1� pjÞ logð1� qjÞ
� 	

;

as the loss function to train the network.
To train the network, we need a training dataset. However, the

true molecule density of the real samples is not known. Therefore,
we used artificial low-resolution images generated from artificial
distributions to train the network.

We generated random molecule distributions that contain K
molecules in a 3D space. In this study, K ¼ 3 was used; the size
of the target 3D space is 3072 nm � 3072 nm � 1600 nm, and
the coordinates of the molecules x�j ðj ¼ 1;2; . . . ;KÞ were indepen-
dently drawn from a uniform distribution on this space. The weight
c�k ðj ¼ 1;2; . . . ;KÞ of each molecule was also independently drawn
from a continuous uniform distribution on ½0:3;1:0	, and the target
value p was generated as in Eq. (11).

We assumed that the size of the low-resolution image obtained
from each focal plane is 16 � 16 and the size of each pixel of
images is 192 nm � 192 nm. The size of the high-resolution voxel
is 24 nm� 24 nm� 50 nm, and a high-resolution image set is com-
posed of 32 images of size 128� 128. The relative lateral drift of
the focal planes D0

z1;D
0
z2 ðz ¼ 2; . . . ;4Þ are randomly chosen as 24s

nm independently, where s is drawn from a discrete uniform distri-
bution on ½�2;2	 
 Z. Then, low-resolution images are generated

by calculating the values of
PK

k¼1ĥðx; xh
kÞ on the low-resolution

grids x ¼ xli ði ¼ 1;2; . . . ;nÞ.
To generate a training dataset, the coordinates of the molecules

fx�
j gKj¼1

and the relative lateral drifts of the focal planes

fD0
z1g4z¼2; fD0

z2g4z¼2 were randomly drawn, as above, for each frame
t ¼ 1;2; . . . ; T independently. By training the network with this
dataset, it is expected that the trained network becomes robust
to the lateral drifts in camera positions within ½�2;2	 high-
resolution voxels.

4. Experiments

We showed the experimental results of the localization by our
proposed method using both artificial images and the real micro-
scopy images. In the following experiments, images observed by
the above microscope were processed on an Nvidia Tesla V100
32 GB GPU to localize molecules in the images.

4.1. Optical layout of the microscope

In this section, the experimental settings of the quad-plane
microscope used in the experiments were presented. A multi-
focus microscope equipped with four EM-CCD cameras (iXon
897, Andor) was constructed based on a commercial inverted
microscope (ECLIPSE Ti, Nikon) (Fig. 5). A 640 nm laser beam
(HL6366DG, Thorlabs) that passed through a cleanup filter
(LD01-640/8, Semrock) was focused on the back focal plane of a
100� oil immersion objective (Plan Apo VC 100X/1.40, Nikon) to
illuminate an Alexa Fluor 647-stained specimen at an excitation
intensity of approximately 5 kW/cm2. The fluorescence emitted
from the specimen was collected by the same objective. A filter
cube consisting of an excitation filter (608–648 nm, FF02-628/40,
Semrock), a dichroic mirror (669 nm, FF660-Di02, Semrock), and
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a bandpass mirror (672–712 nm, FF01-692/40, Semrock) was used
to separate the excitation and emission light. The fluorescence
image formed by the internal tube lens of the inverted microscope
was relayed by an achromatic lens (f = 125.0 mm, Thorlabs), split
twice by 1:1 beam-splitter mirrors (BSW29R, Thorlabs), and refo-
cused onto the four cameras via achromatic lenses (f
= 100.0 mm, Thorlabs). The axial positions of the achromatic lenses
in front of the cameras were adjusted so that the four planes at
400 nm intervals in the Z-axis direction of the specimen corre-
sponding to the conjugate planes of the sensor surface of the
respective camera. The relative distance among planes was esti-
mated based on a shift in Z-axis position dependence of PSFs,
which were determined by imaging fluorescent beads (FluoSphere
Carboxylate-Modified Microspheres, 0.2 lm, Invitrogen) while
varying Z-axis positions of the objective using a piezo positioner
(P725.1, PI). The difference in the field of view of the cameras
was corrected by coordinate registration using affine transforma-
tion, the parameters of which were determined by images of mul-
tiple fluorescent beads captured using different cameras.

Methanol-fixed COS7 cells were used for STORM imaging of
tubulin molecules expressing inside the cells as described previ-
ously [27]. The primary and secondary antibodies were an anti-
tubulin antibody (YL1/2, Abcam) and an Alexa Fluor 647-labeled
anti-rat IgG antibody, respectively. The specimen was mounted
in a STORM buffer (10 mM NaCl, 60% sucrose, 10% glucose, 0.1%
b-mercaptoethanol, 0.5 mg/mL glucose oxidase, 0.04 mg/mL cata-
lase, and 50 mM HEPES, pH 8.0) and then subjected to imaging.
Images were acquired at 22 Hz with 20 ms exposure.

4.2. Experiments with artificial images

First, we used two different datasets to assess the effects of lat-
eral drifts for molecule localization. One dataset was affected by
the random lateral drifts D0

k ¼ ðD0
k1;D

0
k2;0Þ ðk ¼ 2;3;4Þ for each

image independently, and the other dataset did not consider the
lateral drifts when generating the artificial images. Then, we used
each dataset to train the network. Each dataset consists of 90,000

low-resolution images fyl
tg

90000
t¼1 and the corresponding molecule

existence probabilities fptg90000t¼1 generated from the random mole-



Fig. 6. (a) An example of artificial molecule distribution and a part of the target 3D
space is shown for visualization purpose. True locations of molecules are shown by
red circle and the voxels which contain the molecules are shown by green cuboid.
(b) The observed image generated from the artificial distribution. Note that the
images are normalized for visual emphasis.
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cule distribution. The parameters of the experiments are presented
in Table 2. An example of training data is shown in Fig. 6. We used
Adam [28] as an optimizer, with the parameters b1 ¼ 0:9; b2 ¼ 0:99
and the initial learning rate was set to 1:0� 10�3, and the batch
size was 100. The dataset was randomly shuffled at the end of each
one of 30 epochs.

To assess the effect of lateral drifts, we evaluated the estimation
accuracy of the two trained networks. We generated 500 artificial
images that contain only one molecule in the 3D space, and the
other parameters were the same as the parameters in Table 2. In
this experiment, we assumed that a molecule exists in a voxel
where the network outputs the highest molecule existence proba-
bility. Fig. 7 shows a 2D histogram of the estimation error along x
and y axes by two networks. The error is discretized at the resolu-
tion of the high-resolution voxels, and the element at (0, 0) shows
the number of correctly localized molecules. Further, the Jaccard
indices of the classification of the voxels that contain a molecule
are shown in the caption. As we can see from the figure, the net-
work that is trained to be robust to the lateral drifts localizes most
of the molecules correctly. Meanwhile, the error of the network
that is not robust to the lateral drifts distributed to a broader area,
and the number of the correctly localized molecules is less than in
Fig. 7(a). This result suggests that if we do not consider the effect of
the lateral drifts, the accuracy deteriorates even when only one
molecule exists in the target space.

We also evaluated the computational speed and localization
accuracy of the compressed sensing method and robustly trained
network using 500 artificial images that contain only one molecule
in the target 3D space. As the previous experiment, the generated
images were affected by the lateral drifts. Also, we assumed that
the number of molecules in the target space is known for the com-
pressed sensing method. Table 3 shows the average lateral and
axial error between the estimated voxel and the true voxel. The lat-
eral error of the CNN is smaller than the lateral error of the com-
pressed sensing. On the other hand, the axial error of the
compressed sensing method is smaller than the axial error of
CNN, however, this is due to the assumption that the number of
molecules is known in advance. Most importantly, when estimat-
ing the molecule distribution, CNN process shows much higher
fps than the compressed sensing method.

Next, we validated the accuracy of the robustly trained network
against lateral drifts. As the previous experiment, we generated
artificial images that contain only one molecule in the 3D space
and estimated that a molecule exists in the voxel where the net-
work outputs the highest molecule-existence probability. In
Fig. 8, the mean localization accuracy along the horizontal (X), ver-
tical (Y), and axial (Z) directions with 95% confidence intervals are
shown for each true molecule depth. The figure indicates that the
error along each axis is within a high-resolution voxel on average
along each axis at all depths.

Fig. 9 shows the estimation results with multiple molecules.
The molecules are sampled from the helix curve (red line), and
their high-resolution coordinates are shown by red circles. In this
experiment, we estimated that the molecules exist in the voxels
Table 2
Parameters for experiments with artificial data.

Parameter Value

Target space size 3072 � 3072 � 1,600 [nm]
Resolution of a low-resolution voxel 192 � 192 � 400 [nm]
Resolution of a high-resolution voxel 24 � 24� 50 [nm]
Size of observed images 16 � 16� 4
Number of molecules 3
Variance of Gaussian noise r2 ¼ 9
Rate parameter of Poisson noise k ¼ 4
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whose molecule-existence probability exceeds a certain threshold.
The thresholding value is common for all locations and needs to be
specified by a user. Here, we selected 0.1 for the thresholding
value. As demonstrated in Fig. 9(a), three molecules distributed
in the 3D space are also accurately localized. Although, as Fig. 9
(b) indicates, the closely located molecules are difficult to localize,
the estimated locations are close to the ground-truth locations. By
plotting all the detected molecules from all frames, the helix curve
structure behind the molecules can be observed in Fig. 9(c).

The processing speed of the network is presented in Fig. 10. As
shown in the figure, the computational speed decreases as the size
of the image increases and is inversely proportional to the number
of pixels of an image. Because 22 images are obtained by our
microscopy at every second, further improvement of the process-
ing speed is required to process the large images in real-time. Still,
the computational time is significantly reduced in comparison to
the compressed sensing method. By solving the problem Eq. (9)
by an alternating minimization, the processing speed is only
1:45� 10�3 fps even for a small 16� 16� 4 input.



Fig. 7. Histogram of the localization error of a single molecule. (a) the network that is trained to be robust against the lateral drift and (b) the network that is trained without
considering the lateral drifts.

Table 3
Computational speed and accuracy of the CNN and compressed sensing method.

CNN Compressed sensing

Lateral error [nm] 16.7 57.6
Axial error [nm] 8.90 0.400
Frame per second 125 0.129

Fig. 8. Average estimation error along the horizontal (X), vertical (Y), and axial (Z)
axes with their 95% confidence intervals.

Fig. 9. Localization results using artificial data. The red lines shows the true molecular s
resolution molecule coordinates and the blue triangles show a estimated molecule locatio
shows the image reconstructed from 300 frames.
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4.3. Experiments with real images

In this section, we show the experimental results with real data
that observed microtubules by our microscopy. In this experiment,
there were no ground-truth results; hence, we used the trained
neural network from the previous subsection to localized
molecules.

The resolution of the low- and high-resolution images are the
same as in the previous subsection. The size of the input images
for each frame is 256� 256� 4, and the target image size is
2048� 2048� 32. An example of a frame is shown in Fig. 11.
The dataset contains 39,000 frames of images, and each frame
was processed independently to localize the molecules. In this
experiment, we estimated that a molecule exists in a voxel if the
molecule-existence probability exceeds 0:05.

Fig. 12 shows the estimated high-resolution image generated by
merging localization results of all the frames. Each pixel of the
image is a binary value, which indicates that the voxel contains a
molecule in more than one frame. From the figures, we can observe
a tubular structure of the microtubules, which varies depending on
the depth.
5. Discussion

This study presents the 3D molecule localization problem using
quad-plane microscopy. The problem with using MUM is lateral
drift in the camera positions, which makes the localization less
tructure from which molecules were sampled from. The red circles show true high-
ns. Figures (a) and (b) shows the estimation results of selected frames, and figure (c)



Fig. 10. Computational speed (fps) of estimations by the trained network for
images of the size 16 px � 16 px, 32 px � 32px, . . . ,256 px � 256 px. The estimation
speed of our network is inversely proportional to the number of pixels of an image.

Fig. 11. A frame which observed and microtubules. The observed images is a
256� 256� 4 image and the difference in the field of view of the cameras was
corrected by affine transformation.

Fig. 12. Estimated high-resolution image of the microtubules data. The depth-
dependent tubular structure of the sample is visualized by the colors.
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accurate. We formulated the localization problem as a compressed
sensing problem that consists of the molecule localization and an
estimation of the amount of drifts. However, the computational
cost to solve this problem is high, and the optimal solution cannot
be obtained within a reasonable computational time. In this study,
we used CNN to solve this problem accurately and efficiently. The
network is trained to be robust against the sub-pixel-sized lateral
drift in the camera locations. Therefore, the trained network can
accurately estimate the locations of molecules in an observed
image without explicitly estimating the amount of drift in the
cameras.

Experiments with both artificial data and real data were pre-
sented. The results suggest that the network achieves 3D localiza-
tion of the molecules with an average lateral resolution of 25 nm
and an axial resolution of 50 nm. The trained network is also
robust to the lateral drift in the camera positions and estimates
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the molecule location without estimating the amount of lateral
drifts. We expect that this technique can be used to broaden the
applicability of MUM to 3D imaging because an explicit drift cor-
rection is not required.

However, some limitations are worth noting. Although our pro-
posed method significantly reduces the computational cost of solv-
ing the localization problem, large images are still difficult to
process with real-time processing speed. Therefore, future work
should include further improvement in computational speed.
Using a faster method to extract possible molecule locations and
localizing the molecule by the proposed method may further
improve the computational efficiency.
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