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A B S T R A C T

Single‐molecule localization microscopy is widely used in biological research for measuring the nanostructures
of samples smaller than the diffraction limit. In this paper, a novel method for regression of the coordinates of
molecules for multifocal plane microscopy is presented. A regression problem for the target space is decom-
posed into regression problems for small subsets of the target space. Then, a deep neural network is used to
solve these problems. By decomposing the regression problem, a fully convolutional neural network can be
used to solve the regression problems. The computation of the network is efficient, and a simple and
parameter‐free loss function can be used to train the network. The proposed algorithm is validated by both sim-
ulated and real data obtained by quad‐plane microscopy.
1. Introduction

Fluorescence microscopy is widely used in biological research to
analyze the structure of in vivo samples. However, due to the diffrac-
tion limit of light, the resolution of conventional fluorescence micro-
scopy is limited to approximately 200 nm laterally and 500 nm
axially. To overcome this diffraction limit, a number of super‐
resolution microscopy methods (see Schermelleh et al., 2019 and ref-
erences therein), including single‐molecule localization microscopy
(SMLM) (Betzig et al., 2006; Hess et al., 2006), have been proposed.
The fundamental problem in super‐resolution microscopy is to esti-
mate the true molecular distribution from observed images. In SMLM,
only several molecules are activated at a time using photoactivatable
molecules; therefore, the positions of the activated molecules can be
accurately estimated by a localization algorithm, such as Gaussian fit-
ting. Then, by integrating the localization results of many frames into
one image, a high‐resolution image can be obtained.

However, the problem of SMLM is its slow imaging speed, and the
reasons for this are twofold. First, because fluorescent molecules are
sparsely activated in a frame to accurately localize the molecules, a
long acquisition time is required to obtain a large number of frames
for the reconstruction of high‐resolution images. The second reason
for the slow imaging speed is that conventional localization methods,
such as Gaussian fitting (Betzig et al., 2006; Hess et al., 2006), com-
pressed sensing (Gu et al., 2014), and spline interpolation (Babcock
and Zhuang, 2017; Li et al., 2017), require a long computation time
to localize molecules, especially when the size of an image is large
or the super‐resolution scale factor is large. Therefore, a faster localiza-
tion algorithm that can accurately estimate densely activated molecule
locations from observations is necessary to achieve interactive
imaging.

Recently, deep neural networks (DNNs) have received increased
attention and have been successfully used in a wide variety of applica-
tions, including various imaging problems (Lucas et al., 2018), due to
their high predictive performance. In the past several years, DNNs
have been also applied to SMLM problems, such as molecule localiza-
tion (Zelger et al., 2018; Ouyang et al., 2018; Nehme et al., 2018; Boyd
et al., 2018; Zhang et al., 2018), colorization (Hershko et al., 2019),
and background estimation (Möckl et al., 2020). In particular, DNNs
achieved molecule localization with a higher accuracy and speed than
conventional methods.

Conventional approaches for molecule localization use hand‐
crafted model and estimate molecules locations by solving an opti-
mization problem. The benefit of this approach is that the training
of the model is not required. However, it is difficult to model various
factors that may affect to the observation process for an accurate esti-
mation. In addition, the computational cost to solve an optimization
problem of molecule localization is usually high and therefore a long
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computation time is required to process a large number of images. On
the other hand, DNN based methods use a flexible model and instead
of hand‐crafting the model, the model is trained by a large amount of
data for an accurate molecule localization. Also, although the training
a neural network takes several hours to several days, the trained net-
work can estimate the molecules locations efficiently by a combination
of simple calculations.

The training of a neural network relies on the availability of a large
variety and amount of labeled data, which are pairs consisting of an
observation and a target molecule distribution. However, the true
molecule distribution of a real observation is generally unknown;
therefore, most SMLM algorithms use a reasonable generative model
to simulate observations from artificial molecule distributions. A pair
consisting of an artificial molecule distribution and an observation
generated from the distribution is used to train a neural network;
therefore, infinite training data can be generated to train a network.

There are two main types of methods to localize molecules by
DNNs: voxel‐based methods and regression‐based methods. In voxel‐
based methods, such as Nehme et al. (2018, 2019) and Aritake et al.
(2020), a convolutional neural network (CNN) is used to localize the
molecules. The target three‐dimensional (3D) space is split into voxels
at a predefined target resolution. Then, molecules are localized by clas-
sifying the voxels into voxels containing a molecule and voxels not
containing a molecule. These methods treat molecule localization as
a classification problem, and the output of the network is the probabil-
ity of containing a molecule for each voxel. Because the fluorescence of
a molecule spreads around the molecule, a CNN is used as a classifier
to localize the molecules for each voxel. Because the target resolution
is higher than the resolution of the input images, the network contains
upsampling layers to enhance the resolution of the latter. To train the
network, the true molecule distribution is also voxelized and com-
pared with the estimated molecule distribution. To compare distribu-
tions, the sum of the binary cross‐entropy (BCE) for each voxel is
used as the objective value to train the network.

The drawback of voxel‐based methods is their slow computational
speed. When the size of the input image or the target resolution
increases, the number of intermediate representations becomes extre-
mely large. Because the convolutional layers used in CNNs involve lin-
ear operations, the computation time largely depends on the number
of intermediate representations. Another shortcoming of voxel‐based
methods is that the architecture of the network must be modified
and trained each time the target resolution is changed.

Unlike voxel‐based methods, DeepLoco (Boyd et al., 2018) is a
regression‐based method that directly estimates the coordinates of
molecules in the target 3D space. DeepLoco consists of feature extrac-
tion layers and regression layers. An important difference from voxel‐
based methods is that the network does not use upsampling layers for
feature extraction. Therefore, the number of intermediate representa-
tions does not significantly increase due to the input image, and the
computational cost is much lower than that of voxel‐based methods.
In addition, because the locations of molecules are directly estimated
Fig. 1. Outline of proposed method fo
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as continuous values, the trained network can be used for any target
resolution.

However, training a regression‐based neural network is not as sim-
ple as training a voxel‐based neural network. Because the network
directly estimates the set of coordinates of molecules, a function is
required that quantifies the difference between the set of true coordi-
nates and the set of estimated coordinates. DeepLoco regards molecule
distributions as weighted empirical distributions and uses the
weighted sample maximum mean discrepancy (MMD) (Gretton
et al., 2012) as the difference between two sets of coordinates. How-
ever, the difference calculated by the weighted sample MMD depends
on the kernel function and its variance parameter. It is difficult to
select an optimal kernel and its parameter, however, as the optimal
choice varies depending on the density of the molecules and the target
resolution. This makes training the network more difficult than for
voxel‐based methods. Another problem of DeepLoco is that it only
accepts fixed‐size input. DeepLoco uses convolutional layers such as
VGG (Simonyan and Zisserman, 2015) to extract the features of a
given image and then uses the extracted features to estimate the coor-
dinates of molecules and the confidence by stacked residual blocks
used in a residual neural network (ResNet) (He et al., 2016). A residual
block is fully connected; therefore, the size of a feature must be fixed
for the regression.

In this work, we propose a novel method to regress molecule loca-
tions by a DNN. The basic principle of our method is to decompose a
regression of multiple molecules into voxel‐wise regressions of a single
molecule. The benefit of the decomposition is that training the net-
work becomes much simpler by considering regression problems for
only one molecule. The architecture of the proposed network is simple,
and commonly used parameter‐free loss functions can be used to train
the network. An outline of our proposed method is presented in Fig. 1.

In our proposed method, a regression problem is decomposed into
two subproblems: the classification of voxels and the regression of
molecular coordinates of the voxels. We assume that at most one mole-
cule exists in a voxel in the observed image. Then, we solve two sub-
problems under this assumption. The first subproblem is the
classification of voxels to distinguish voxels in an input image that con-
tain a molecule from voxels that do not contain a molecule. This prob-
lem can be solved by the same method used in voxel‐based methods.
Here, the resolution of a voxel does not need to be enhanced by upsam-
pling; therefore, the computational cost to solve this classification
problem is much smaller than that of molecule localization by voxel‐
based methods. The second subproblem is the regression of the mole-
cule coordinate in a voxel. Because we assume that only one molecule
exists in a voxel, we only need to estimate the coordinate of one mole-
cule in the voxel by a regression method.

By decomposing the regression problem into two subproblems, the
probability of containing a molecule and the coordinate of the mole-
cule in the voxel are estimated for each voxel. Because fluorescence
is spread around the molecule, and it is only necessary to localize at
most one molecule in a voxel, we use a CNN to estimate the probability
r regressing molecule coordinates.
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and coordinate for each voxel. In practice, we can use a single CNN to
solve both the classification and regression subproblems simultane-
ously. In addition, we can use a simple loss function to calculate the
objective value for training the neural network. In this work, we use
the sum of the BCE and ‘1 distance as the loss function for each voxel.
These functions are parameter‐free and as simple as the objective func-
tion in voxel‐based methods; Therefore, training the network becomes
as simple as in voxel‐based methods. However, our method does not
require the target resolution parameter and maintains the computa-
tional efficiency of regression‐based methods.

In this work, we apply our proposed method to an image obtained
by multifocal plane microscopy (MUM). Like other localization meth-
ods, we use a point spread function (PSF) that approximates the imag-
ing process of MUM to generate artificial data, and we use the artificial
data to train our model. Whereas the lateral drift of MUM reduces the
accuracy of localization algorithms, our algorithm is robust to lateral
drift by being trained on artificial data containing lateral drift.

The contribution of this study are summarized as follows. We pro-
pose a novel method to regress the coordinates of molecules in the tar-
get space using a CNN. The key principle of our method is to
decompose a regression problem into classification and regression
problems for each voxel in an observed image. The proposed network
is also fully convolutional, and images of any size can be processed by
the same network. The comparison with other types of DNN based
method is summarize in the Table 1. The source code to train and test
our proposed model is available at https://github.com/t-aritake/
voxel-wise-regression-SMLM.

The remainder of this paper is organized as follows. In Section 2,
we describe the generative model and PSF used in our work. In Sec-
tion 3, our proposed method, which consists of classification and
regression problems, is formulated, and the architecture of the neural
network to solve these problems is presented. Then, in Section 4, we
validate our method by applying it to both artificial and real datasets.
In Section 5, we conclude the paper.

2. Formulation

In this section, we formulate the observation model and PSF used in
this work. In this work, we use MUM to observe the fluorescence of
molecules, and the fluorescence intensities are observed at several
depths in the target space.

2.1. Observation model

A set of images obtained by MUM represent the fluorescence inten-
sities in the target space. Let Φ ¼ ½0; S1� � ½0; S2� � ½0; S3�#R3 be a tar-
get 3D space that is observed by a microscope. Practically, the
observed image is discretized and finite‐dimensional; thus, we assume
that the target space Φ is discretized into n1 � n2 � n3 disjoint voxels,
where n1; n2, and n3 are the number of bins along the x‐, y‐, and z‐axis,
respectively. We also assume that the elements of the observed image
are fluorescence intensities observed at the center of the voxels. The
voxels are represented as Φijk ðði; j; kÞ∈ΩÞ, where
Table 1
The comparison with other types of neural network methods.

Voxel-based DeepLoco Proposed

Type of the output discrete continuous continuous
Parameter of the loss function not required required not required
Computational Speed slow fast fast
Input size any fixed any
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Ω ¼ fði; j; kÞji∈ f1;2; . . . n1g ^ j∈ f1;2; . . . n2g ^ k∈ f1;2; . . . n3gg. We
assume that all voxels have the same size and that the size of the voxels
is s1 � s2 � s3, where sd ¼ Sd=nd ðd ¼ 1;2;3Þ. In addition, the coordi-
nate of the center of the voxel Φijk is written as
xijk ¼ ðxijk;1; xijk;2; xijk;3Þ∈R3; therefore, Φijk ¼ ½xijk;1 � s1=2; xijk;1 þ s1=2�
�½xijk;2 � s2=2; xijk;2 þ s2=2� � ½xijk;3 � s3=2; xijk;3 þ s3=2�.

The fluorescence intensity at each voxel is determined by the coor-
dinate of observation xijk, the coordinates of molecules in the target
space, the weights of the molecules, and the PSF, which depends on
the optical layout of the microscope. Let y∈Rn1�n2�n3

þ be an observed
image and zm ∈Φ ðm ¼ 1;2; . . . ;MÞ be the coordinate of a molecule,
whereM is the number of molecules in the target space Φ. The weights
that control the peak fluorescence intensity of a molecule are repre-
sented as wm ∈ ½0;1�⊂R ðm ¼ 1;2; . . . ;MÞ. Then, the fluorescence
intensity is determined by these values and the PSF. The PSF is repre-
sented by f, and the fluorescence intensity at xijk is formulated as

yijk ¼ f ðxijk; fðzm;wmÞgMm¼1Þ: ð1Þ
The fluorescence intensities of the molecules are disjoint; therefore,

yijk can be written as the linear combination of the fluorescence of each
molecule as

yijk≈∑
M

m¼1
wmf ðxijk; zmÞ: ð2Þ

In addition, the observation contains shot noise and Gaussian noise;
therefore, the observation can be modeled as

yijk ¼ ∑
M

m¼1
wmf ðxijk; zmÞ þ ɛijk ði; j; kÞ∈Ω; ð3Þ

where ɛijk consists of Poisson noise, which represents the shot noise,
and Gaussian noise, which represents the observation noise.

2.2. Point spread function (PSF)

In this study, although an observation model is not explicitly used
for molecule localization, it is used to generate artificial data to train a
model to localize molecules. However, true PSF is generally unknown;
therefore, we use an approximate PSF that models the imaging process
of the microscope that is used to obtain the observations.

In this paper, we use quad‐plane microscopy as MUM, and four
cameras are used to observe fluorescence at different depths of the tar-
get space Φ. Therefore, hereinafter, n3 ¼ 4 is assumed. The PSF of
quad‐plane microscopy is modeled by the following function:

f ðxijk; zmÞ ¼ aðxijk;3 � zhm;3Þ exp � ðxijk;1�zm;1Þ2þðxijk;2�zm;2Þ2
2ðrðxijk;3�zhm;3ÞÞ

2

� �
þ b; ð4Þ

where aðxÞ is the peak fluorescence intensity, rðxÞ is the width of fluo-
rescence, and b is the background fluorescence intensity. This PSF is
similar to the PSF used in Gu et al. (2014) for biplane microscopy
and models the distribution of fluorescence as a Gaussian function.
The width of the PSF rðx3Þ varies depending on the distance between
the molecule and the focal planes, and is described by the following
defocus curve:

rðxÞ ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

D

� �2
þ A

x
D

� �3
þ B

x
D

� �4
r

; ð5Þ

where r0 is the width of the PSF when a molecule is on the focal plane,
and D is the focus depth of the microscope. The peak aðxÞ of the PSF
depends on the width rðxÞ, and is modeled as

aðxÞ ¼ a0

2πrðxÞ2 : ð6Þ

https://github.com/t-aritake/voxel-wise-regression-SMLM
https://github.com/t-aritake/voxel-wise-regression-SMLM


Table 2
Parameters of the point spread function.

Parameters Value

a0 5:00� 107

b 0
r0 1:33� 102

D 3:02� 102

A 7:37� 10�4

B 6:27� 10�3

Fig. 2. Width of observed fluorescent beads and values of the defocus curve.
The observed width of the fluorescent beads w at each depth x3 are
represented by a circle. The red line represents the value of the defocus curve
to approximate the width with the parameters in Table 2. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 2 presents the width of the observed fluorescent beads and the
value of the defocus curve (5). The parameters of the PSF is decided as
Table 2 so that the PSF well approximates the width and peak intensity
of the observed fluorescence of the fluorescent beads.

In addition, observation by MUM is affected by the lateral drift of
the camera positions. The amount of lateral drift is identical for each
focal plane, and we denote the amount of lateral drift of the kth focal
plane along the horizontal and vertical axis by Δk ¼ ðΔk1;Δk2;0Þ∈R3.
When lateral drift is considered, the observed fluorescence at the coor-
dinate xijk from a molecule located at zm is modeled as f ðxijk � Δk; zmÞ
using PSF. As the PSF is defined in Eq. (4), the following equation
holds:

f ðxijk � Δk; zmÞ ¼ f ðxijk; zm þ ΔkÞ: ð7Þ
This equation implies that when the camera positions have lateral

drift Δk, the fluorescence observed at xijk from the molecule at zm is
identical to the fluorescence observed at xijk from the molecule at
zm þ Δk. Therefore, the lateral drift of cameras must be considered
for accurate molecule localization. In practice, because the absolute
amount of drift cannot be estimated from observation, we consider
the relative amount of drift Δk0 ðk ¼ 2;3;4Þ from the reference focal
plane k ¼ 1.

3. Method

3.1. Molecule localization by regression-based method

The problem of molecule localization is to estimate the coordinates
of molecules in the target space. In this work, we solve the molecule
localization problem as a regression problem. Namely, the coordinates
4

of molecules zm ðm ¼ 1;2; . . . ;MÞ are directly estimated by regression,
and ẑm ðm ¼ 1; 2; . . . ; M̂Þ denote the estimated coordinates of mole-
cules, where M̂ is the estimated number of molecules. To estimate
the coordinates of molecules from an observed image y, we use a

regression model g parameterized by θ; therefore, fẑmgM̂m¼1 ¼ gðy; θÞ.
The accuracy of the regression model g depends on the parameter θ.

To train the model g for accurate regression, we solve the following
minimization problem:

minimizeθLðfzmgMm¼1; fẑmgM̂m¼1Þ; ð8Þ
where L is the loss function to quantify the difference between the set of
true coordinates of molecules fzmgMm¼1 and the estimated coordinates of
molecules fẑmgMm¼1. If M ¼ M̂ ¼ 1, simple loss functions such as the ‘1
distance or ‘2 distance can be used as L. However, in general,

M; M̂ > 1 and M – M̂, and the sets fzmgMm¼1; fẑmgM̂m¼1 represent the dis-
tribution of molecules in the target space. Therefore, the loss function
L must satisfy the following conditions to quantify the difference
between the two sets. First, L must be defined between two sets.
Because different sets have a different number of elements, and the ele-
ments of a set are generally not ordered, the loss function L must
directly quantify the difference between the two distributions of mole-
cules in the target space. Second, the loss function must be differen-
tiable to train the model g by gradient‐based methods, which can be
easily applied for training.

By estimating the confidence of regression with the coordinates,
M̂ can be set to a sufficiently larger number than the true number
of molecules M. However, the choice of the loss function is limited
due to the conditions mentioned above. For example, DeepLoco
(Boyd et al., 2018) uses the weighted sample MMD (Gretton
et al., 2012) as the loss function. However, it is difficult to identify
a loss function that is parameter‐free, easy to calculate, and easy to
minimize for training a model. To overcome this difficulty, we

avoid the direct estimation of the molecule coordinates fẑmgM̂m¼1

in the target 3D space, and allow a simple loss function to be used
to train the model.

3.2. Proposed method

In this work, instead of solving a regression problem to estimate
the coordinates of multiple molecules in the entire target space, we
decompose the regression problem into a regression problem for
each voxel Φijk ðði; j; kÞ∈ΩÞ. Namely, a single regression problem
of an entire image is decomposed into multiple regression problems
of small regions of the target space. Then, we assume that at most
one molecule is contained in a single voxel. This assumption is rea-
sonable because fluorescent molecules are sparsely activated; there-
fore, multiple molecules are rarely contained in a single voxel.
Under this assumption, a regression problem for a single molecule
is solved for each voxel. Therefore, a simple loss function can be
used as the loss function to train the regression models for the
voxels.

In practice, if a molecule is not contained in a voxel, the regression
problem for the voxel cannot be solved, as the target variable for the
regression problem does not exist. Therefore, we solve the regression
problem for a voxel as the composition of two subproblems. The first
subproblem is a binary classification problem to distinguish whether a
voxel contains a molecule, while the second subproblem is a regression
problem for the voxel. The second problem must be solved for voxels
that contain a molecule.

Let cijk be a binary value that is a label of the binary classification
subproblem, where

cijk ¼
1 9m∈ f1;2; . . .Mg; zm ∈Φijk;

0 otherwise:

�
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We consider label cijk to be positive if cijk ¼ 1 and negative other-
wise, and voxel Φijk is considered a positive or negative voxel accord-
ing to its label. We also define a set of indices of positive voxels as
Ωþ ¼ fði; j; kÞjcijk ¼ 1g#Ω and a set of indices of negative voxels as
Ω� ¼ Ω nΩþ. In addition, for a regression for a voxel, the coordinate
of a molecule zm must be converted to the coordinate of a voxel.
Assuming zm ∈Φijk, the coordinate of the molecule in voxel Φijk is the
coordinate relative to the size of the voxel, and is represented as
ζ ijk ¼ ðζijk;1; ζijk;2; ζijk;3Þ, where

ζijk;d ¼
zijk;d � xijk;d

sd
þ 1
2
∈ ½0;1� ðd ¼ 1;2; 3Þ:

As evident in this equation, the coordinate zijk can be restored from
ζ ijk and xijk. Note that the true coordinates of molecules ζ ijk are defined
only for voxels that contain a molecule, namely, for all voxels
Φijk ðði; j; kÞ∈ΩþÞ.

In summary, it is necessary to estimate the label of voxels in an
observed image y and the relative coordinates of the voxels containing
a molecule. We represent the estimated label and coordinate for voxel
Φijk by ĉijk and ζ̂ijk ¼ ðζ̂ijk;1; ζ̂ijk;2; ζ̂ijk;3Þ, respectively. Then, a set of four

values η̂ijk ¼ ðĉijk; ζ̂ijk;1; ζ̂ijk;2; ζ̂ijk;3Þ is estimated for each voxel
Φijk ðði; j; kÞ∈ΩÞ by the model g as follows:

η̂ ¼ gðy; θÞ; ð9Þ
where η̂ ¼ ðηijkÞði;j;kÞ∈Ω

∈Rn1�n2�4�4 is an array of estimated values. Here,

instead of estimating the binary label, our model estimates the positive
label probability as ĉijk ∈ ½0; 1� for each voxel. It should be noted that
although the coordinates of molecules are estimated for all voxels,
the estimation is reliable only when the voxel contains a molecule.
Therefore, the probability ĉijk can also be seen as the confidence of

the estimated coordinate ζ̂ ijk.
The model g is trained by minimizing the following loss function:

Lðη; η̂Þ ¼ ∑
ði;j;kÞ∈Ω

LBCEðcijk; ĉijkÞ þ ∑
ði;j;kÞ∈Ωþ

Lposðζijk; ζ̂ijkÞ; ð10Þ

where ĉijk and ζ̂ijk are estimated by g as (9), and the parameters θ of g are
optimized to minimize the loss function. Here, LBCEi is the BCE for the
classification subproblem:

LBCEðcijk; ĉijkÞ ¼ cijk log ĉijk þ ð1� cijkÞ logð1� ĉijkÞ;
and Lpos is the loss function for the regression subproblem in each voxel.
Because the true molecule coordinate ζ ijk is defined only for voxels that
contain a molecule, this loss is calculated only for voxel
Φijk ðði; j; kÞ∈ΩþÞ. Because we assume that only one molecule exists
in a voxel Φijk ðði; j; kÞ∈ΩþÞ, we use the ‘1 loss function as follows:

Lposðζijk; ζ̂ijkÞ ¼ kζijk � ζ̂ijkk1:
Training the model involves the class imbalance problem. Because

fluorescent molecules are sparsely activated in the target space, the
number of positive voxels is much smaller than the number of negative
voxels. Therefore, the sum of the loss of negative voxels,
Fig. 3. Architecture of a convolutional neural network. The activation function u
except for the last layer. In the last layer, sigmoid activation is used to predict the
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∑
ði;j;kÞ∈Ω�

LBCEðcijk; ĉijkÞ;

is much larger than the sum of the loss of positive voxels,

∑
ði;j;kÞ∈Ωþ

ðLBCEðcijk; ĉijkÞ þ Lposðζ ijk; ζ̂ ijkÞÞ:

Therefore, a model trained by minimizing this loss function tends
to estimate the label probabilities as close to 0 even for positive voxels.
To address this problem, we use hard negative mining, which uses only
a part of the loss of negative voxels. This technique has been recently
used in learning a neural network for object detection (Liu et al.,
2016), and allows the trained model to perform more accurate estima-
tion for positive voxels. Let π be the pth largest loss of negative voxels
LBCEðcijk; ĉijkÞ ðði; j; kÞ∈Ω�Þ, where the confidence ĉijk is estimated by
the model g with the current parameters. Then, we solve the following
minimization problem to train g:

minimizeθ ∑
ði;j;kÞ∈Ω0

LBCEðcijk; ĉijkÞ þ ∑
ði;j;kÞ∈Ωþ

Lposðζ ijk; ζ̂ ijkÞ; ð11Þ

where Ω0 ¼ Ωþ∪fði; j; kÞ∈Ω�jLBCEðcijk; ĉijkÞ ⩾ πg.
In this work, we use a CNN as the regression model gðy; θÞ, and the

architecture of the model g is presented in Fig. 3. As the figure indi-
cates, our model is a simple fully convolutional neural network, and
the label probability and coordinate are estimated for each voxel.
Because the fluorescence of a molecule spreads around the molecule,
the values of a voxel can be estimated from fluorescence around the
voxel using convolution operations. In the first two layers, 5� 5 con-
volutions are used to extract features, while 3� 3 convolutions are
used in the remaining layers. Here, the width and height of intermedi-
ate representations are identical to those of the input image, and only
the number of channels is changed in each layer. Then, in each layer of
the network except for the last layer, the rectified linear unit (ReLU) is
used as the activation function, followed by batch normalization (Ioffe
and Szegedy, 2015). In the last layer, a sigmoid function is used as the
activation function, as the class probability and the values of the rela-
tive coordinate are elements in ½0;1�. Finally, the array of size
n1 � n2 � 16 is resized to n1 � n2 � 4� 4 so that the network outputs
four values for each voxel of the input image.

Although, we use the 8 layered simple CNN, shallower or deeper
networks can also be considered. If we use shallower network, compu-
tation become slightly faster and the training of the network becomes
easier. However, it is difficult to extract appropriate features for the
classification and the regression from the input image by shallow net-
works. On the other hand, deeper networks are able to extract more
complex features than shallow networks. Instead, the computation
become slightly slower, and the training of the network becomes diffi-
cult and requires more training data. Also, more complex networks
such as U‐net used in Nehme et al. (2018) can also be used.

The benefit of this model is that an input image of any width and
height can be processed because the model g is fully convolutional.
In addition, the number of elements of intermediate representations
is increased only by changing the number of channels; therefore, esti-
mation by the network is computationally and memory efficient.
sed in this model is the rectified linear unit (ReLU) and batch normalization
four values ðĉijk; ζ̂ijk;1; ζ̂ijk;2; ζ̂ijk;3Þ∈ ½0; 1�4.



Fig. 4. Optical layout of quad-plane microscope. The intermediate image is
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The optimal parameter θ of the network is different according to
the optical layout of the microscope. Then, the user needs to train
the network so that the output of the network is close to the actual
class labels and the coordinates before applying to the real samples.
We use artificial data generated from the observation model described
in Section 2 to train the network g. We determine the number of mole-
cules M and sample the coordinates of the molecules from a uniform
distribution of the target space Φ. These coordinates are converted
to the label and coordinates of the voxel; then, these values are used
as target values for the regressions. A set of observed images at each
focal plane is calculated using the observation model. When calculat-
ing the sets of observed images, the relative lateral drift
Δk0 ðk ¼ 2;3;4Þ is also randomly determined for each sample. By train-
ing a neural network using these data, the network becomes robust to
the lateral drift of camera positions.

We note that when the optical layout of the microscope is changed,
the network needs to be retrained. For example, when the type of opti-
cal lenses are changed, the PSF of the optical system is also changed.
Then the network needs to be retrained by the new training data gen-
erated from new observation model. However, when the optical sys-
tem is only slightly changed, only small number of training data is
required for fine‐tuning the network.
Table 3
Parameters for experiments with artificial data.

Parameter Value

Target space size S1 ¼ S2 ¼ 12;288 [nm], S3 ¼ 1; 600 [nm]
Resolution of a voxel s1 ¼ s2 ¼ 192 [nm], s3 ¼ 400 [nm]
Size of images n1 ¼ n2 ¼ 64; n3 ¼ 4
Number of molecules M ¼ 50
Variance of Gaussian noise σ2 ¼ 9
Rate parameter of Poisson noise λ ¼ 10

relayed onto each camera via a pair of lenses (L1, f = 125.0 mm; L2,
f = 100.0 mm). TL, tube lens; M1, 1:1 beam-splitter mirror. The inset displays
the focusing planes of four cameras.
4. Experiments

In this section, we present the experimental results of localization
by the proposed method using both artificial images and real micro-
scopy images. In the following experiments, the images observed by
the microscope described below were processed on an NVidia Tesla
V100 32 GB graphics processing unit (GPU) to localize molecules in
the images.

4.1. Optical layout of microscope

In this subsection, we present the experimental settings of the
microscope used in the experiments. The microscope settings were
the same as those used in prior work (Aritake et al., 2020). A multi‐
focus microscope equipped with four EM‐CCD cameras was con-
structed based on a commercial inverted microscope, as illustrated
in Fig. 4. A 640‐nm laser beam was focused on the back focal plane
of a 100� oil immersion objective lens to illuminate an Alexa Fluor
647‐stained specimen at an excitation intensity of approximately
5 kW/cm2. The fluorescence emitted from the specimen was collected
by the same objective lens. The fluorescence image formed by the
internal tube lens of the inverted microscope was relayed by an achro-
matic lens (f = 125.0 mm), split twice by 1:1 beam‐splitter mirrors,
and refocused onto the four cameras via achromatic lenses
(f = 100.0 mm, Thorlabs). The axial positions of the achromatic lenses
in front of the cameras were adjusted so that the four planes were at
400‐nm intervals in the Z‐axis direction of the specimen corresponding
to the conjugate planes of the sensor surface of the respective cameras.
The difference in the field of view of the cameras was corrected by
coordinate registration using affine transformation, whose parameters
were determined by images of multiple fluorescent beads captured on
different cameras.

4.2. Experiments with artificial data

We used 100,000 artificial frames generated by the observation
model to train the network. Each frame consisted of four images that
approximated quad‐plane microscopy observations. The parameters
of the experiments are presented in Table 3. The coordinates of mole-
cules zm ðm ¼ 1;2; . . .MÞ were uniformly randomly sampled from the
target space Φ, and the weights of the molecules wm ðm ¼ 1;2; . . .MÞ
were also randomly sampled from a uniform distribution in [0.3,
6

1.0]. In addition, we used random lateral drift
Δk0 ¼ ðΔk10;Δk20;0Þ ðk ¼ 2;3; 4Þ for each observation. The observed
value was then calculated by (3). An example of the training data is
presented in Fig. 5. We used Adam (Kingma and Ba, 2015) as the opti-
mizer, where the parameters were β1 ¼ 0:9 and β2 ¼ 0:99, the initial
learning rate was set to 1:0� 10�3, and the batch size was 50. The
epoch number of the optimization was 20, and the dataset was ran-
domly shuffled at the end of each epoch. Our method does not require
adjustment of the learning rate based on the number of epochs.

To validate the accuracy of the trained network, we used artificial
test images that were generated in the same way as the training data.
In this experiment, we estimated that a molecule existed in a voxel Φijk

if the label probability ĉijk exceeded a threshold value τ, and we used
τ ¼ 0:5 or τ ¼ 0:9. Fig. 6 provides the localization results that were
estimated by the trained network. As the figure indicates, most of
the molecules in the target space were localized close to the true coor-
dinates for both threshold values. Unlike the voxel‐based method
which localize the molecule at predefined target resolution, the coor-
dinates of molecules are localized as continuous values. Although
some molecules were not localized for τ ¼ 0:9, the localization results
were almost identical for both threshold values; thus, most molecules
were localized accurately.

Fig. 7(a) presents the Jaccard index of binary classification for var-
ious molecule densities. We used 1,000 artificial images, and the num-
ber of activated molecules differed for each density. As seen in Fig. 7
(a), the Jaccard index of binary classification slightly decreased as the
density of activated molecules increased. This demonstrates that the



Fig. 5. (a) Example of artificial molecule distribution containing 50 molecules
in the target space. The true locations of molecules are represented by blue
crosses. A list of coordinates of the molecules was used to train the network.
(b) Observed image simulated from the artificial distribution. The size of the
image was 64� 64� 4.

Fig. 6. Examples of molecule distribution of test data and molecule distribu-
tion estimated by the trained network with the threshold values (a) τ ¼ 0:5
and (b) τ ¼ 0:9. Blue crosses represent the true molecule coordinates, while
orange plus symbols represent the estimated coordinates. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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binary classification became more difficult as the density increased
due to the overlap of fluorescence. In practice, as the density of the
molecules increased, the number of false‐positive (FP) cases increased
more than the number of false‐negative (FN) cases because close mole-
cules are difficult to localize correctly. However, as Fig. 7(b) indicates,
the average distance from a localized molecule to its nearest molecule
along each axis was close to zero for all densities. Although the aver-
age error along each axis was slightly biased, this is possibly because
the artificial training data did not have enough variety to alleviate
the effect of lateral drifts in average. In addition, the errorbar of
Fig. 7(b) shows the standard deviation of the error and Fig. 8 presents
the distribution of the errors along each axis for different thresholding
value and molecule density. Here, we selected the distribution of the
minimum and maximum density in Fig. 7(b). As seen in the figures,
the variance of the distribution increased as the molecule density
7

increased and the errors along each axis followed a Poisson‐like distri-
bution. These results suggest that even when voxels were not com-
pletely correctly classified, molecules could be localized from
adjacent voxels.

Table 4 presents a confusion matrix of the binary classification of
voxels for a threshold value of 0.5. The label probability estimated
by the trained network was binarized using the threshold value. We
used 500 artificial images for this experiment, and 50 molecules were
activated for each image. Therefore, a confusion matrix of a total of



Fig. 7. Error of binary classification and error of regression for various molecule densities. (a) Jaccard index of binary classification; (b) average and standard
deviation of the error between the estimated coordinate and the nearest molecule.

Fig. 8. Histograms of errors of regression for different density. The variance of the distribution mainly depends on the density of the molecules. Especially the
errors along z-axis are Poisson distributed and the variance of the distribution becomes large when the molecule density is high.
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Table 4
Confusion matrix of binary classification by the trained network. The estimated
label was binarized using a threshold value of τ ¼ 0:5.

True label

Positive Negative

Estimated label Positive 22,878 1,844
Negative 2,089 8,165,189

Table 5
False positive and false negative cases considering the adjacent voxels of false
positive and false negative voxels.

Adjacent1 Adjacent2 Non-adjacent

False Positive 1,399 445 0
False Negative 318 372

Fig. 10. Example of a frame with observed microtubules. The observed image
was a 256� 256� 4 image, and the difference in the field of view of the
cameras was corrected by affine transformation. In the above figure, the
fluorescence from fluorescent beads are masked to zero and images are
normalized for better visibility of fluorescence from the microtubules.

Fig. 9. Comparison of computational speed of deep-learning-based methods
for image sizes of 16� 16� 4; 32� 32� 4, …, 256� 256� 4. The compu-
tation time consisted of the time to load the images, time to transfer them to
graphics processing units (GPUs), and time to predict the coordinates and
confidence.
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8,192,000 voxels is presented in Table 4. When the coordinate of a
molecule was close to the boundary of a voxel, the network sometimes
failed to estimate the correct label probability of the voxel. Instead, the
network estimated that a molecule existed in the neighboring voxel
closest to the true molecule location.

Additional details of the FP and FN cases are listed in Table 5. Adja-
cent1 lists the number of FP and FN voxels for which an FN voxel and
its adjacent FP voxel had a one‐to‐one correspondence. In this case, a
molecule was localized from the adjacent FP voxel. Similarly, Adjacen-
t2 for FP indicates the number of FP voxels that were adjacent to TP or
FN voxels. In this case, FP voxels could be adjacent to multiple FN or
TP voxels. In addition, Adjacent2 for FN presents the number of FN
voxels that were adjacent to voxels whose labels were estimated to
be positive. Then, Non‐adjacent for FP indicates the number of FP vox-
els that were not adjacent to TP or FN voxels, and Non‐adjacent for FN
indicates the number of FN voxels that were not adjacent to TP or FP
voxels. As illustrated in Table 5, there were no FP voxels that were not
adjacent to voxels that contained a molecule. This result suggests that
because the existence probabilities of molecules were estimated from
the intensity of molecules, FP voxels only appeared close to voxels that
contained a molecule.

The processing speed of the network is displayed in Fig. 9. The
computation time consisted of the image loading time, image transfer
time to a GPU, and computation time on the GPU. As indicated in the
figure, the computational speed of our proposed method was as fast as
that of DeepLoco and faster than that of the voxel‐based method, espe-
cially when large images were processed. Our method achieved 200
fps for the localization of molecules including data loading and data
transfer; thus, our method is readily applicable to the real‐time local-
ization of molecules. In addition, images of various sizes can be pro-
cessed by the same network.

4.3. Experiments with real data

In this subsection, we present the experimental results of real data
of observed microtubules using the microscope described in Sec-
tion 4.1. Methanol‐fixed COS7 cells were used for stochastic optical
reconstruction microscopy (STORM) imaging of tubulin molecules
expressed inside the cells, as described in a previous study
(Cleveland and Sullivan, 1985). Images were acquired at 22 Hz with
20‐ms exposure. The observed images were preprocessed by an affine
transformation so that the pixel‐level translations of the images were
removed. However, it should be noted that sub‐pixel‐level translation
remained in the observed images because the lateral drift of the cam-
era positions affected the observation. The size of the voxels in the
observed images was the same as in Section 4.2. An example of a frame
is presented in Fig. 10. Note that the fluorescence intensity from beads
that are used as markers are blighter than the fluorescence from sam-
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ples; hence, the fluorescence from beads are masked to zeros for better
visibility of fluorescence from specimen. The dataset consisted of
30,000 frames, and each frame consisted of 256� 256 images
obtained from four focal planes. Therefore, the size of each frame
was n1 ¼ n2 ¼ 256 and n3 ¼ 4. Each frame was processed indepen-
dently to localize the molecules.

Fig. 11(a) presents the 3D coordinates of molecules estimated from
all frames. Here, we used the threshold value τ ¼ 0:9. Fig. 11(b) pre-
sents a high‐resolution image generated by discretizing the estimated
coordinates. Here, we set the super‐resolution scale factor along each
axis to 8 and the voxel size of the high‐resolution images to
24� 24� 50 [nm]. The difference in depth is represented by colors.



Fig. 11. Visualization of localization results for a threshold value of τ ¼ 0:9.
(a) Scatter plot of localized molecules; (b) high-resolution image generated
from localization results.
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Fig. 11 reveals the tubular structure of the microtubules which varies
depending on the depth.
5. Conclusion

In this paper, we propose a novel deep learning model for regress-
ing the coordinates of molecules from an observed image obtained by
MUM. The key principle of our method is to decompose a regression
problem into classification and regression problems for each voxel in
an observed image. Then, the localization problem of each voxel is
solved as a combination of a binary classification and regression prob-
lem for a single molecule. By this decomposition, a fully convolutional
neural network can be used to solve the regression problem, and train-
ing the network is also simplified. In addition, our proposed method is
parameter‐free, computationally efficient, and can process images of
any size by the same model. The experimental results demonstrate
the effectiveness of our proposed method.

In this study, we applied our method to images obtained by MUM.
Then, we used the voxels in the input image to decompose the regres-
sion problem. However, the layout of the voxels can be modified.
10
Therefore, our method is applicable to a wide variety of optical layouts
if a reasonable generative model is provided and if it can be assumed
that at most one molecule exists in a voxel. For example, 3D localiza-
tion from a single image can also be performed by changing the optical
layout of the microscope and the layout of the output voxels from the
layout of the input image. We plan to study the application to other
types of microscopy in future work. The overlapped layout of voxels
may also improve the classification accuracy of the voxels.
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