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Abstract. Sleep is an essential process for the survival of animals. How-
ever, its phenomenon is poorly understood. To understand the phe-
nomenon of sleep, the analysis should be made from the activities of
a large number of cortical neurons. Calcium imaging is a recently devel-
oped technique that can record a large number of neurons simultaneously,
however, it has a disadvantage of low time resolution. In this paper, we
aim to discover phenomena which characterize sleep/wake states from
calcium imaging data. We made an assumption that groups of neurons
become active simultaneously and the neuronal activities of groups differ
between sleep and wake states. We used non-negative matrix factoriza-
tion (NMF) to identify those groups and their neuronal activities in time
from calcium imaging data. NMF was used because neural activity can
be expressed by the sum of individual neuronal activity and fluorescence
intensity data are always positive values. We found that there are certain
groups of neurons that behave differently between sleep and wake states.
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1 Introduction

Sleep is controlled by the brain [9] and is essential not only for the brain to
function normally but also for the survival of animals. However, the phenomenon
itself is not well understood [10]. Currently, only electroencephalography (EEG),
an objective method, can detect sleep/wake states (wakefulness, non-rapid-
eye-movement (NREM) sleep, and rapid-eye-movement (REM) sleep), whereas
behavioral methods, which record animals’ posture or movement, cannot [6].
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EEG recordings—signals from electrodes placed on the head—reflect extracel-
lular electrical events across the cerebral cortex (the brain surface). Therefore,
the neurophysiological behavior of cortical neuronal populations are assumed to
differ across sleep/wake states. Nevertheless, it is still unclear how cortical neu-
ral ensembles behave during sleep/wake states owing to the lack of measurement
and analysis technology. For example, EEG recordings reflect sleep/wake states;
however, individual neural activity cannot be observed using EEG. It is possible
to record neural activities at the cellular level with sufficient temporal resolu-
tion using electrophysiological techniques such as patch-clamp, intracellular, and
extracellular unit recordings. However, it is difficult to record a large number of
neurons or identify the recorded cell types using these techniques.

To overcome the technical limitations of electrophysiological methods, we
use calcium imaging techniques to observe the cortical neural activity during
sleep/wake states. Calcium imaging is a technique recently developed to record
neural activities at the cellular level. The fluorescence intensity of calcium indica-
tors such as GCaMP depends on the concentration of calcium ions. It reflects the
neural activity because action potential generation (spike) increases the intra-
cellular concentration of calcium. Another characteristic of GCaMP is that it
is genetically encodable and can be delivered into the target cells using virus
vectors and a Cre-LoxP system. Calcium imaging in the brain can be performed
in vivo with two-photon laser scanning microscopy. Calcium imaging has the
disadvantage of a low time resolution (e.g., individual spikes cannot easily be
captured owing to the slow kinetics and low sampling rates.); however, it has
the considerable advantages of (1) high spatial resolution, (2) large recording
field, and (3) ease of combination with genetic methods, where the activity of
various identified neurons can be obtained simultaneously.

In this study, we aim to understand sleep/wake-dependent neural ensem-
bles in the cerebral cortex, which hopefully increase the understanding of sleep.
Calcium imaging data were acquired from identified excitatory and inhibitory
neurons in layer 2/3 of the primary motor cortex (M1)—a part of the cerebral
cortex—of a sleeping/waking mouse at 8 Hz. It is well known that individual
neurons in the M1 exhibit sleep/wake state-dependent activity patterns [8] and
the M1 contributes to memory consolidation of acquired motor skills during
sleep [5]. Their population behavior during sleep/wake states, however, is still
unexplored, despite its close involvement in learning and memory.

Two approaches can be considered to analyze neural ensembles; estimation
of correlation and causality of neurons. We take the first approach, estimating
the correlation of observed cortical neurons. To estimate causality, we need to
distinguish whether a presynaptic or postsynaptic cell is fired from the data.
There are studies of inference on spikes [16] and neuronal connectivity [13] from
calcium imaging data. However, it is claimed in [13] that the calcium imaging
data sampled with a frequency lower than 30 Hz do not provide meaningful
results. Therefore, we can estimate only correlation from the calcium imaging
data sampled with low frequency.



104 M. Nagayama et al.

There are few reports on the statistical analysis of calcium imaging data in
the brain during sleep. One example of the sleep research using calcium imaging
is an analysis of neural activity in and near the lateral dorsal tegmental nucleus
(LDT) of the brainstem that is a component of the REM-regulatory circuits [4].
Neuronal activity in the LDT for 20 s before and after the state transition was
analyzed by a principal component analysis (PCA). Then, k-means clustering
was performed for the 2D plot of the first and second principal components.
A few LDT neurons were observed to be more active in the wake state than
the REM state and vice versa, and all LDT neurons were less active in the
NREM state than in the REM or wake states. This research indicates that
neurons can be divided into a few groups and the behavior of each group differs
across sleep/wake states. This study focuses on the state transition and extracted
the principal components of the fluorescence intensity during state transition.
However, neuronal groups throughout sleep/wake states should be analyzed for
our aim.

To better understand sleep/wake-dependent neural ensembles in the cerebral
cortex, we assume that groups of cortical neurons become active simultaneously
and the activated groups change over time. We used non-negative matrix fac-
torization (NMF [11]) to estimate those groups and how they are activated in
time. NMF was not performed to extract the fluorescence intensity like Cox [4]
did, but for the neuronal groups. We used NMF because neural activity can be
expressed by the sum of individual neuronal activity; further, fluorescence inten-
sity data are always positive values. We found that there are certain groups of
neurons that behave differently between sleep and wake states.

We proposed a protocol to analyze the calcium imaging data with a low
sampling rate. We showed that the well-known NMF algorithm could effectively
analyze such data by comparing its performance with those of PCA and inde-
pendent component analysis (ICA).

2 Methodology

We acquire calcium imaging data of neurons in layer 2/3 from the primary motor
cortex (M1) of a sleeping/waking mouse. The imaging lasted for 15 min at 8 Hz.
A total of 154 neurons were observed. The fluorescence signal in each frame for
each neuron was extracted by evaluating the mean intensity of the pixels within
each region of interest (ROI) after subtracting the background signal. EEG and
EMG signals were also recorded during the experiments, and NREM, REM, and
wake states were scored.

We made an assumption regarding the generative model of the data, which is
that there are K groups of observed neurons that are activated simultaneously,
and the fluorescence intensity of observed neurons is generated by the combined
activities of those groups. Groups can overlap and neurons can belong to multiple
groups. We assume that the behavior of the groups vary over time and the
activities of those groups differ between NREM, REM, and wake states. The
schematic is shown in Fig. 1.
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Fig. 1. Observed neurons are assumed to
form K-grouped and the recorded fluores-
cence intensity is generated by the com-
bined activities of those groups. In this
figure, K = 3 groups are assumed and
the activated neurons are colored.

Fig. 2. Mathematical model designed
based on the assumption Fig. 1. The flu-
orescence intensity of the observed neu-
rons at time t, x(t), is represented as a
weighted sum of K groups dk. The figure
shows a schematic of the model when
K = 3.

Based on the assumption above, we designed a mathematical model for the
calcium imaging data. Let R+ be a set of non-negative real numbers. Let x(t) ∈
R

N
+ , (t = 1, 2, · · · , T ) be the fluorescence intensity of the observed neurons at

time t and dk ∈ R
N
+ , (k = 1, 2, · · · ,K) be K groups of neuronal activities where

N is the number of observed neurons and T is the observation time. Fluorescence
intensity data are all positive values; therefore, x(t) is a positive vector. Then,
x(t) can be modeled by the weighted sum of the groups {dk; k = 1, · · · ,K} as
follows:

x(t) =
K∑

k=1

ck(t)dk + η(t), (1)

where ck(t) is a positive coefficient of dk and η(t) ∈ R
N is a noise vector at time

t. The schematic of the model is shown in Fig. 2. We note that the groups dk are
constant over time and time dependency of the observed data x(t) is represented
by the coefficient ck(t) and noise η(t). The noise of calcium imaging is mostly
photon shot noise, which obeys a Poisson distribution. For high photon counts,
shot noise can be approximated by a Gaussian distribution [15]; therefore, η(t)
can be represented as

η(t) ∼ N (0, σ2), (2)

where σ2 is the variance.
Equation (1) can be written in a matrix form as follows:

X = DC + H, (3)

where X ∈ R
N×T
+ , D ∈ R

N×K
+ , C ∈ R

K×T
+ , and H ∈ R

N×T . The columns of X
are the observation x(t), columns of matrix D are the groups dk, (k, t)-element
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of matrix C are the coefficients ck(t), and the columns of H are noise vectors
η(t). The correspondence between Eqs. (1) and (3) is shown in Fig. 3.

Fig. 3. Matrix form of Eq. (1).

We estimate the matrices D and C from the data matrix X by using
NMF [11], which is an unsupervised learning method similar to PCA and ICA,
as one of the approaches in the linear generalized component analysis [3]. NMF
decomposes a non-negative matrix X into a product of non-negative matrices
D and C. By decomposing the data matrix X by NMF, frequent signals will
be obtained as the columns of D. The matrix D is called a dictionary in the
literature of signal processing and machine learning. The columns of the dictio-
nary D are interpreted as basis vectors or also called atoms. The columns of the
matrix C are coefficients of atoms and we call C a coefficient matrix henceforth.
Because of the non-negativity of the coefficient matrix C, X is represented by a
non-negative weighted sum of atoms of D. The restriction of non-negativity also
induces sparsity of C. The number of groups K ∈ N should be given a priori for
decomposition.

From Eqs. (1) to (3), Xij is i.i.d. Gaussian random variable with mean [DC]ij
and variance σ2:

p(Xij ; [DC]ij) = N ([DC]ij , σ2). (4)

The dictionary D and coefficient matrix C is estimated by the following maxi-
mum log-likelihood problem under the non-negative constraints on D and C:

maximize
D≥0,C≥0

∑

i,j

log p(Xij |[DC]ij). (5)

By calculating Eq. (5), we can see that Eq. (5) is equivalent to minimizing the
Frobenius norm of the difference between X and DC under the non-negative
constraints on D and C:

minimize
D≥0,C≥0

||X − DC||F , (6)

where the Frobenius norm of matrix A ∈ R
m×n is defined as follows:

||A||F =

√√√√
m∑

i=1

n∑

j=1

a2
ij , aij is the (i, j)-element of A. (7)
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3 Results

We used two-photon calcium imaging data of a transgenic mouse during
sleep and wakefulness. To distinguish between excitatory (glutamatergic) and
inhibitory (GABAergic) neurons, Vgat-tdTomato mice were generated. Red flu-
orescence protein tdTomato was expressed particularly in inhibitory neurons
in layer 2/3 of the M1 of Vgat-tdTomato mice, which were histologically con-
firmed. A genetically encoded green fluorescence calcium indicator GCaMP6s
was used to monitor neural activity. GCaMP6s was delivered to M1 neurons
using adeno-associated virus vectors under the control of a neuron-specific
human synapsin 1 promoter. Thus, we defined GCaMP6s-positive/tdTomato-
negative and GCaMP6s-positive/tdTomato-positive neurons as excitatory and
inhibitory neurons, respectively. Fluorescence imaging was performed with a
custom-designed upright two-photon microscope (based on Axio Examiner
Z1/LSM780) and a trackball-treadmill system [10]. The mice were acclimated to
sleeping on the trackball-treadmill prior to imaging experiments. GCaMP6s and
tdTomato were two-photon excited at 910 and 1040 nm, respectively, using a tun-
able Ti:Sa laser (Maitai DeepSee, Spectra-Physics). Fluorescence of GCaMP6s
and tdTomato was detected with a non-descanned GaAsP detector in the range
of 500–550 nm and >555 nm, respectively (BiG, Zeiss). A 1040-nm excitation
was used only to identify inhibitory neurons prior to time-lapse calcium imaging.
Two-photon time-lapse images were intermittently acquired six times between
12:00 and 17:00 (the rest time for mice) at 8 frames/s with 128 × 256 pixels of 16-
bit depth. Each imaging lasted for 15 min and we refer to each 15 min data as a
dataset. EEG and EMG signals were also recorded during imaging experiments.
EEG signals were amplified 40,000x and filtered with a pass-band of 0.5–500 Hz,
and EMG signals were amplified 4000x and filtered with a pass-band of 1.5–
1000 Hz using an analog amplifier (MEG-5200, NIHON KOHDEN). EEG/EMG
signals were digitized at 2000 Hz using a 16-bit analog-to-digital converter (Digi-
data 1440A, Molecular Devices), and they were acquired with Clampex 10.3 soft-
ware (molecular devices). Scan timing signals for two-photon imaging were also
digitized with the same systems to temporally match the EEG/EMG data to the
two-photon images. EEG and EMG signals were downsampled at 250 Hz, divided
into 4 s epochs, and analyzed for scoring NREM/REM/wake states using a home-
made Matlab program. The fluorescence signal in each frame for each neuron was
extracted by evaluating the mean intensity across the pixels within each region of
interest (ROI) after subtracting the background signal using Fiji/ImageJ. ROIs
were set such that the neuropil signals were not included.

We calculated ΔF/F from each dataset and the data matrix X was created
by concatenating six datasets. Then, the data matrix X was normalized such that
the sum of each column was one. By minimizing Frobenius norm cost function,
the dictionary D and coefficient matrix C were obtained. We tried 29 different
values for the number of atoms K, increasing 10 to 150 in increments of 5, because
the appropriate value for K is unknown. Larger K can reconstruct X with small
error; however, the atoms would have small information. We want atoms that
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have rich information; thus, we assumed a smaller K than the number of neurons.
We also used PCA and ICA to validate the performance of NMF.

We used random forest [1] to solve the state classification problem to compare
three methods and different K. The input of random forest are columns of the
coefficient matrix C for NMF. For PCA and ICA, matrices equivalent to C were
used for the input of random forest. High accuracy in random forest means that
the extracted features of the corresponding method can distinguish states. We
are comparing three methods and K by the accuracy of random forest. Three
states, NREM, REM, and wake, were classified using 3-fold cross-validation.
Train and test data were prepared after dividing the input data into 15 s blocks.
The results are shown in Fig. 4. The accuracy of each validation is shown by
markers, and the average of the three validations is shown by lines.

Fig. 4. Accuracies of state classification by the random forest with three methods and
different numbers of atoms. Features used in the random forest are columns of the
coefficient matrix C and matrices correspond to that. Three states, NREM, REM, and
wake, were classified and the classification accuracy is calculated using 3-fold cross-
validation. The accuracy of each validation is shown with markers and the average of
three validations is shown with lines.
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The result shows that NMF exhibits better performance than PCA and ICA.
This suggests that NMF is more suitable for the generative process of the data
with its non-negativity. The result also shows that K = 65 had the highest
accuracy for NMF, suggesting that this is the best K that extracts atoms that
differ across sleep/wake states.

We then analyzed the atoms of K = 65. To evaluate the atoms used differ-
ently between sleep and wake states, we used the importance of random forest
and Jensen–Shannon divergence [12] (JSD). We used JSD because analyzing the
importance of random forest might not be sufficient. The k-th row of C, ck(t),
is a time series of the coefficient of the atom dk. When values of ck(t) differ
between states, the corresponding atom dk is considered to be used differently
between states. To measure how differently an atom was used in each state, we
calculated the JSD of the coefficient of each atom between NREM and wake
states. REM state was not used because it rarely appears in our dataset.

The importance from random forest and the JSD of each atom are presented
in Figs. 5 and 6 respectively. Top 12 atoms that had high importance and the
JSD is shown in Table 1. The 58th atom is the highest and the 18th atom is the
second highest in both importance and the JSD. However, the order of atoms
after third place differed in importance and the JSD. This difference should be
carefully considered; however, we could not determine the same, and thus, we
would leave it for our future work.

Fig. 5. The importance of K = 65 atoms
from random forest.

Fig. 6. JSD calculated from coeffi-
cients of K = 65 atoms.

Our aim is to analyze sleep/wake-dependent neural ensembles. Therefore, we
used Otsu’s method to obtain the number of neurons responsible in each atom.
The result is shown in Fig. 7. Top 12 atoms from Table 1 is colored with light
blue. 58th and 23rd atoms had more than 60 responsible neurons. Both atoms
had high importance and the JSD.
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Table 1. Top 12 atoms that had high importance and the JSD.

Method Atom

The importance 58 18 17 36 43 53 23 10 48 4 33 1

JSD 58 18 11 48 41 40 1 23 17 8 53 36

Fig. 7. Number of neurons responsible in each atom using Otsu’s method. Top 12
atoms from Table 1 is colored with light blue. (Color figure online)

We picked up 6 atoms from Table 1 that had more than one responsible
neuron. The spatial plots of those atoms are shown in Fig. 8. Red markers rep-
resent excitatory neurons and blue markers represent inhibitory neurons. The
size of a marker is the intensity of the corresponding neuron. The boxplot of the
coefficients of those atoms in NREM and wake is shown in Fig. 9.

From Fig. 8, 58th, 23rd, 17th, and 4th atoms do not have evident spatial
clusters; however, 48th and 11th atoms do. From Fig. 9, the former four atoms
contribute to NREM, whereas the latter two atoms somehow contribute to wake.
Co-activation of nearby neurons emerges in the M1 for stereotyped simple behav-
iors [7] but not for learned voluntary movements [14]. In our analysis, sleep-
preferred neuronal ensembles exhibited no evident spatial clustering, suggesting
that the M1 is devoted to higher-order information processing for acquiring com-
plex behaviors during sleep.
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Fig. 8. The spatial plot of atoms. Each marker represents a neuron. The size of a
marker is the intensity of the corresponding neuron.

Fig. 9. The boxplot of the coefficients of the atoms in NREM and wake.
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4 Conclusion

In this paper, we proposed a protocol to analyze the calcium imaging data with
a low sampling rate. We decomposed the data matrix X with NMF and vali-
dated its performance by comparing the results obtained with those of PCA and
ICA. The results showed that NMF performed better than PCA and ICA by
extracting atoms whose activities differ between states. This suggests that NMF
is more suitable for the generative process of the data with its non-negativity.
Results also showed that there are groups of neuronal activities that become
active simultaneously and some groups are related to sleep/wake states. This
is a notable result because NMF does not use state information to decompose
the data matrix X. Furthermore, atoms contributing to NREM had no evident
spatial clusters, which suggests that the M1 is devoted to high-order information
processing for acquiring complex behavior during sleep.

For further investigation, two things should be considered. First, a method
to determine the number of atoms K should be developed. NMF requires that
the number of atoms K be determined beforehand. In this paper, we used a
random forest to determine the number of atoms K; however, further consider-
ation should be made from a biological perspective. Second, the characteristic
of calcium imaging should be considered. Calcium imaging has a slow response
to neuronal activities. The decay halftime of the calcium indicator GCaMP6s is
approximately 0.5s [2], which is much higher than the sampling rate of the data
we use. Therefore, we can expect better results if this property is incorporated
into the decomposition model of NMF. For example, adding a constraint that
makes two adjacent coefficients ck(t) and ck(t+1) similar would help effectively
obtain a better dictionary D and its coefficient C.
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